
Architectural Support for Arithmetic in Optimal Extension Fields

Johann Großschädl
IAIK, Graz University of Technology

Inffeldgasse 16a, A–8010 Graz, Austria
Johann.Groszschaedl@iaik.at

Sandeep S. Kumar, Christof Paar
COSY Group, Ruhr University Bochum
Univ.str. 150, 44780 Bochum, Germany

{kumar,cpaar}@crypto.rub.de

Abstract

Public-key cryptosystems generally involve computation-intensive arithmetic operations, making
them impractical for software implementation on constrained devices such as smart cards. In this
paper we investigate the potential of architectural enhancements and instruction set extensions for
low-level arithmetic used in public-key cryptography, most notably multiplication in finite fields
of large order. The focus of the present work is directed towards a special type of finite fields, the
so-called Optimal Extension Fields GF(pm) where p is a pseudo-Mersenne (PM) prime of the form
p = 2n−c that fits into a single register. Based on the MIPS32 instruction set architecture, we intro-
duce two custom instructions to accelerate the reduction modulo a PM prime. Moreover, we show
that the multiplication in an Optimal Extension Field can take advantage of a multiply/accumulate
unit with a wide accumulator so that a certain number of 64-bit products can be summed up without
overflow. The proposed extensions support a wide range of PM primes and allow a reduction
modulo2n−c to complete in only four clock cycles when n≤ 32.

1. Introduction

Public-key cryptosystems are becoming an increasingly important workload for general-purpose
processors, driven by the need for security and privacy of communication over the Internet. Various
algorithms for public-key cryptography, such as RSA [26] or Diffie-Hellman [7], require to carry out
computation-intensive arithmetic operations on very long integers (typically in the range of 1024 to
3072 bits). This motivated a number of microprocessor vendors to extend their architectures with
special instructions targeting cryptographic applications. For instance, the instruction set of the
IA-64 architecture, jointly developed by Intel and Hewlett-Packard, has been optimized to address
the requirements of long integer arithmetic [21]. The IA-64 provides an integer multiply-and-add
instruction (XMA), which takes three 64-bit operands (a, b, c) and produces the resulta×b+c.
Either the lower or the upper 64 bits of the result are written to a destination register, depending
on whetherXMA.LU or XMA.HU is executed. Another example for a cryptography-oriented ISA
enhancement is theUMAAL instruction, which has been added to version 6 of the ARM architecture
(ARMv6) [1]. TheUMAAL instruction executes a special multiply-accumulate operation of the form
a×b+c+d, interpreting the operands as unsigned 32-bit integers, and stores the 64-bit result in
two general-purpose registers. This operation is carried out in the inner loop of many algorithms
for multiple-precision modular arithmetic, e.g. Montgomery multiplication [15].

In recent years,elliptic curve (EC) cryptographyhas emerged as a serious alternative to the
traditional public-key cryptosystems based on the discrete logarithm problem (DLP) such as Diffie-
Hellman. EC cryptosystems may be viewed as elliptic curve analogues of the older DLP-based
systems in which the groupZ∗p is replaced by the group of points on an elliptic curve defined over

a finite field [5]. The security of these cryptosystems is based upon the difficulty of taking discrete
logarithms in the elliptic curve group; a problem that is supposed to be much harder than the DLP in
the multiplicative groupZ∗p. Therefore, a desired level of security can be attained with significantly
smaller keys, which makes EC cryptography very attractive for small-footprint devices with limited
memory capacities and low-bandwidth network connections.

Another major advantage of EC cryptography is that the domain parameters can be (judiciously)
chosen to improve implementation performance. In particular, an implementer may select a specific
elliptic curve and the underlying finite field (along with a representation for its elements) so that the
curve/field arithmetic can be optimized for the computational environment at hand [5]. Examples
of finite fields with “good” arithmetic properties are prime fields GF(p), binary extension fields
GF(2m), and Optimal Extension Fields (OEFs) [3]. The elements of aprime fieldGF(p) are the
residue classes modulop (typically represented by the integers 0,1, . . . , p−1) and the field arith-
metic is nothing else than the conventional modular arithmetic. Abinary extension fieldGF(2m)
can be constructed in several ways, but most applications express the elements of GF(2m) as binary
polynomials of degree at mostm−1. Addition in GF(2m) is a bit-wise XOR operation, whereas the
multiplication of two field elements is performed modulo an irreducible polynomialp(t) of degree
m with coefficients in GF(2). Binary extension fields are well suited for hardware implementation
due to their “carry-free” arithmetic. In software, however, prime fields GF(p) may result in better
performance, especially when the target processor features a fast integer multiplier [27, 12].

Optimal Extension Fields(OEFs), as introduced in [3], are another family of finite fields which
offer considerable computational advantages. An OEF is an extension field GF(pm) wherep is a
pseudo-Mersenne prime of the form 2n−c that fits into a single processor word, andm is chosen
so that an irreducible binomialx(t) = tm−ω exists over GF(p). The elements of an OEF can be
represented by polynomials of degreem−1 with coefficients from the subfield GF(p). Extension
field multiplication comprises polynomial multiplication over GF(p) and a reduction modulo the
irreducible binomialx(t) [3]. The specific selection ofp, m, andx(t) leads to fast subfield and
extension field reduction, respectively. However, even though EC cryptosystems allow for relatively
small keys, they are nonetheless highly computation-intensive applications and thus challenging to
implement on constrained devices like smart cards.

In this paper, we investigate the potential of architectural enhancements and instruction set
extensions for fast arithmetic in OEFs. The overall execution time of an EC cryptosystem greatly
relies on the efficient implementation of the field arithmetic. In the past, embedded systems with
poor processing capabilities (e.g. smart cards) used dedicated hardware (co-processors) to offload
the heavy computational demands of cryptographic algorithms from the host processor. However,
systems which use fixed-function hardware for cryptography have significant drawbacks: they are
not able to respond to advances in cryptanalysis or to changes in emerging standards. On the other
hand, extending a general-purpose architecture with special instructions for performance-critical
arithmetic operations allows us to combine full software flexibility with the efficiency of a hardware
solution. We will demonstrate in this paper that instruction-level extensions facilitate fast yet
flexible implementations of public-key cryptography, in particular EC cryptography.

1.1. Related work

Research on instruction set extensions for public-key cryptography is currently in an early phase,
similar to the state of research on multimedia extensions about 10 or 15 years ago. Most previous
work is concerned with architectural enhancements and ISA extensions for multiple-precision mod-
ular multiplication, such as required for the “traditional” cryptosystems like RSA [24, 25, 10]. To

the authors’ knowledge, the open literature contains only two publications dealing with specific
instructions for use in elliptic curve cryptography. Previous work of the first author demonstrates
the benefits of a combined hardware/software approach to implement arithmetic in binary fields
GF(2m) [11]. Efficient algorithms for multiple-precision multiplication, squaring, and reduction
of binary polynomials are presented, assuming the processor’s instruction set includes theMULGF2
instruction1. A recent paper by Fiskiran and Lee introducesPAX, a datapath-scalable, minimalist
cryptographic processor architecture for mobile devices [8]. PAX consists of a simple RISC-like
base instruction set, augmented by a few low-cost instructions for cryptographic processing. These
special instructions assist a wide range of both secret-key and public-key cryptosystems, including
systems that use binary extension fields GF(2m) as underlying algebraic structure.

The Domain-Specific Reconfigurable Cryptographic Processor (DSRCP)developed by Good-
man [9] is loosely related to our work. Optimized for energy efficiency, the DSRCP provides
an instruction set for a domain of arithmetic functions over prime fields GF(p), binary extension
fields GF(2m), and elliptic curves built upon the latter. However, from the perspective of design
methodology, the DSRCP represents a “classical” application-specific instruction set processor
(ASIP) developed from scratch, i.e. it is not an extension of an existing architecture.

1.2. Contributions of this work and paper outline

Previous work on architectural enhancements for arithmetic in finite fields has only considered
prime fields GF(p) and binary extension fields GF(2m). In the present paper we introduce, for the
first time, instruction set extensions to support arithmetic in OEFs. We opted for using OEFs in
our work since they have some specific advantages over other types of finite fields, which will be
discussed in Section 2. Designing architectural enhancements for finite field arithmetic requires to
select the proper algorithms for the diverse arithmetic operations and to select a number of suitable
custom instructions (out of a huge number of candidate instructions) so that the combination of both
gives the best result. The first contribution of this paper are slightly modified variants of existing
algorithms for arithmetic in OEFs (Section 3). We use MIPS32 as base architecture and analyze
in Section 4 how these arithmetic algorithms can be efficiently implemented on MIPS32 proces-
sors and what functionality is required to achieve peak performance. Moreover, we also identify
disadvantageous properties of the MIPS32 architecture in this context. Our second contribution
are a number of simple architectural extensions to support OEF arithmetic in an efficient manner
(Section 5). The main goal was to design instruction set extensions that can be easily integrated
into MIPS32 and entail only minor modifications to the processor core.

2. Optimal Extension Fields

OEFs are a family of extension fields GF(pm) with special properties. Bailey and Paar [3] (and
independently Mih̆ailescu [17]) introduced the concept of OEFs in the context of public-key cryp-
tography. The following definition is from [4].

Definition 1. An Optimal Extension Field (OEF) is a finite field GF(pm) such that

1. The prime p is a pseudo-Mersenne prime of the form p= 2n±c with log2(c)≤ bn/2c.
2. An irreducible binomial x(t) = tm−ω exists over GF(p).

1MULGF2 performs a word-level multiplication of polynomials over GF(2), i.e. theMULGF2 instruction works analogue
to an instruction for conventional integer multiplication, but interprets the operands as binary polynomials.

The finite field GF(pm) is isomorphic to the quotient ring GF(p)[t]/(x(t)), wherex(t) is a monic
irreducible polynomial of degreemover GF(p). In this paper, we represent the elements of GF(pm)
as polynomials of degree at mostm−1 with coefficients from the subfield GF(p), i.e. any element
a(t) ∈GF(pm) can be written as

a(t) =
m−1∑
i=0

ai · t i = am−1 · tm−1 + · · ·+a2 · t2 +a1 · t +a0 with ai ∈GF(p) (1)

The construction of an OEF requires to determine whether or not a binomialx(t) = tm−ω is
irreducible over GF(p). Reference [4] describes a method for finding irreducible binomials of a
given degreem over GF(p). A typical example for an OEF is the field GF(pm) with p = 232−5,
m= 5, andx(t) = t5−2, which has an order of(232−5)5≈ 2160.

The basic idea behind OEFs is to select the primep, the extension degreem, and the irreducible
polynomialx(t) of a finite field GF(pm) to closely match the underlying hardware characteristics.
In particular,p is generally selected to be a pseudo-Mersenne prime with a bitlength of less than
but close to the wordsize of the target processor so that all subfield operations can be conveniently
accomplished with the processor’s integer arithmetic instructions. All extension field operations
are performed without carries propagating since the elements of an OEF are polynomials whose
coefficients fit into a single word. The extension field multiplication requires a reduction modulo
the field polynomialx(t), which is particularly simple sincex(t) is a binomial (see Section 3).

OEFs can be used as underlying algebraic structure for cryptosystems that rely on the discrete
logarithm problem (DLP) in finite fields or elliptic curves over finite fields.

Cryptosystems based on the DLP:The non-zero elements of a finite field form a cyclic multi-
plicative group. It is generally assumed that the DLP in finite fields is hard for sufficiently large
field orders (≥ 1024 bits) [23]. Therefore, the finite field DLP can be directly used for public-key
cryptography, e.g. in Diffie-Hellman key exchange [7]. The fundamental computation of public-key
cryptosystems designed around the multiplicative group of a finite field isexponentiation, i.e. the
repeated application of the group operation (multiplication) to a single group element. All standard
algorithms for exponentiation in a multiplicative group work in an OEF as well. However, OEFs
have a special structure which permits much faster exponentiation techniques. A recent paper by
Avanzi and Mih̆ailescu [2] describes an exponentiation method based on the fact that the Frobenius
automorphism can be computed efficiently in OEFs.

Elliptic curve cryptosystems: Elliptic curves defined over a finite field provide a group structure
that can be used to implement cryptographic schemes. The elements of the group are the rational
points on the elliptic curve, together with a special pointO (called the “point at infinity”) acting as
the identity element of the group. The group operation is the addition of points, which can be carried
out by means of arithmetic operations in the underlying finite field (see [5] and [12] for more
details). A major building block of all elliptic curve cryptosystems isscalar multiplication, an
operation of the formk·P wherek is a positive integer andP is a point on the elliptic curve.
Computingk·P means nothing else than adding the pointP exactlyk−1 times to itself, which
results in another pointQ on the elliptic curve2. The inverse operation, i.e. to recoverk when
the pointsP andQ = k·P are given, is the elliptic curve discrete logarithm problem (ECDLP). To
date, no subexponential-time algorithm is known to solve the ECDLP in a properly selected elliptic
curve group [23]. This allows elliptic curve cryptosystems to use much shorter keys compared to
the “traditional” DLP-based schemes, e.g. 160 bits instead of 1024 bits.

2Scalar multiplication in an additive group is the equivalent operation to exponentiation in a multiplicative group.

In general, there are two dominant performance constraints for elliptic curve cryptosystems: the
efficiency of the scalar multiplication and the efficiency of the arithmetic in the underlying finite
field. The overall number of field additions, multiplications, and inversions, respectively, depends
heavily on the chosen coordinate system [5]. Projective coordinates save field inversions at the
expense of an increased number of field multiplications. On the other hand, affine coordinates have
the advantage that they require less memory for storing temporary values. Therefore, the decision
regarding whether to use projective or affine coordinates is primarily driven by the relative cost
of field inversion to multiplication and the availability of memory. A particular advantage of OEFs
in this context is the relatively low complexity of the inversion operation [4]. The results in [12] and
[27] indicate that the inversion in an OEF can be performed much faster than in a prime field GF(p)
or binary extension field GF(2m). Therefore, OEFs are especially attractive for low-cost devices
where limited memory resources enforce the use of affine coordinates.

3. Arithmetic in Optimal Extension Fields

In the following subsections we briefly outline the implementation of addition (subtraction), mul-
tiplication, squaring, and inversion in an OEF. We represent the elements of an Optimal Extension
Field GF(pm) according to Equation (1) as polynomials of degree at mostm−1 with coefficients
from the subfield GF(p). The primep is generally selected to be a pseudo-Mersenne prime that fits
into a single computer word. Consequently, we can store them coefficients(am−1, . . . ,a2,a1,a0)
of a(t) ∈GF(pm) in an array ofm single-precision words (i.e. unsigned integers).

Addition and subtraction of two field elementsa(t),b(t) ∈GF(pm) is accomplished in a straight-
forward way by addition/subtraction of the corresponding coefficients.

c(t) = a(t)±b(t) =
m−1∑
i=0

ci · t i with ci = ai±bi mod p (2)

A reduction modulop (i.e. an addition or subtraction ofp) is necessary whenever the sum or
difference of two coefficientsai and bi is outside the range of[0, p−1]. There are no carries
propagating between the coefficients.

3.1. Multiplication and squaring

A multiplication in the extension field GF(pm) can be performed by ordinary polynomial mul-
tiplication over GF(p) and a reduction of the product modulo an irreducible polynomialx(t). The
product of two polynomials of degree at mostm−1 is a polynomial of degree at most 2m−2.

c(t) = a(t) ·b(t) =
(m−1∑

i=0

ai · t i
)
·
(m−1∑

j=0

b j · t j
)

=
m−1∑
i=0

m−1∑
j=0

(ai ·b j mod p) · t(i+ j) =
2m−2∑
k=0

ck ·tk (3)

There are several techniques to accomplish a polynomial multiplication. The standard algorithm
moves through the coefficientsb j of b(t), starting withb0, and multipliesb j by any coefficient
ai of a(t). This method, which is also referred to asoperand scanningtechnique, requires to
carry out exactlym2 multiplications of coefficientsai ,b j < p. However, there are two advanced
multiplication techniques which typically perform better than the standard algorithm. The so-called
product scanning technique reduces the number of memory accesses (in particular store operations),
whereas Karatsuba’s algorithm [14] requires fewer coefficient multiplications [4].

a0 · b0a1 · b0a2 · b0a3 · b0

a0 · b1a1 · b1a2 · b1

a3 · b1

a0 · b2a1 · b2

a2 · b2

a3 · b2

a0 · b3

a1 · b3

a2 · b3

a3 · b3

c0c1c2c3c4c5c6

Figure 1. Multiply-and-accumulate strategy (m = 4)

Theproduct scanningtechnique employs a “multiply-and-accumulate” strategy [12] and forms
the productc(t) = a(t) ·b(t) by computing each coefficientck of c(t) at a time. Therefore, the
coefficient-productsai ·b j are processed in a “column-by-column” fashion, as depicted in Figure 1
for m= 4, instead of the “row-by-row” approach used by the operand scanning technique. More
formally, the productc(t) and its coefficientsck are computed as follows.

c(t) = a(t) ·b(t) =
2m−2∑
k=0

ck · tk with ck =
∑

i+ j =k

ai ·b j mod p (0≤ i, j ≤m−1) (4)

The product scanning technique requires exactly the same number of coefficient multiplications as
its operand scanning counterpart (namelym2), but minimizes the number of store operations since
a coefficientck is only written to memory after it has been completely evaluated. In general, the
calculation of coefficient-productsai ·b j and the reduction of these modulop can be carried out in
any order. However, it is usually advantageous to compute an entire column sum first and perform
a single reduction thereafter, instead of reducing each coefficient-productai ·b j modulo p. The
former approach results inm2 reduction operations, whereas the latter requires only one reduction
per coefficientck, which means 2m−1 reductions altogether.

Whena(t) = b(t), the coefficient-products of the formai ·b j appear once fori = j and twice for
i 6= j. The square of a polynomiala(t) of degreem−1 can be obtained with onlym·(m+1)/2
coefficient multiplications, which is easily observed from the following formula for squaring a
binomiala(t) = a1 ·t +a0.

a2(t) = (a1 · t +a0)2 = (a2
1 mod p) · t2 +(2a1a0 mod p) · t +(a2

0 mod p) (5)

An integral part of both polynomial multiplication and polynomial squaring is the so-called subfield
reduction.

Subfield reduction: Throughout this paper, the termsubfield reductionrefers to the reduction of a
coefficient-product (or a sum of several coefficient-products) modulo a pseudo-Mersenne (PM)
prime p of the form 2n−c, whereby the bitlength of the offsetc is at mostbn/2c. These are the
typical settings for PM primes used to construct OEFs (see Definition 1). PM primes are a family
of numbers highly suited for modular reduction due to their special (custom) form [6]. They allow
to employ very fast reduction techniques that are not applicable to general primes. The efficiency
of the reduction operation modulo a PM primep = 2n−c is based on the relation

2n≡ c mod p (for p = 2n−c) (6)

which means that any occurrence of 2n in an integerz≥ 2n can be substituted by the much smaller
offsetc. To give an example, let us assume thatz is the product of two integersa,b < p, and thus
z< p2. Furthermore, let us write the 2n-bit productz aszH ·2n +zL, wherebyzH andzL represent

then most and least significant bits ofz, respectively. The basic reduction step is accomplished by
multiplying zH andc together and “folding” the productzH ·c into zL.

z = zH ·2n +zL ≡ zH ·c+zL mod p (since 2n≡ c mod p) (7)

This leads to a new expression for the residue class with a bitlength of at most 1.5n bits. Repeating
the substitution a few times and performing final subtraction ofp will yield the fully reduced result
x mod p. A formal description of the reduction modulop = 2n−c is given in Algorithm 1.

Algorithm 1. Fast reduction modulo a pseudo-Mersenne primep = 2n−c with log2(c)≤ n/2

Input: n-bit modulusp = 2n−c with log2(c)≤ n/2, operandy≥ p.
Output: Residuez= y mod p.

1: z← y
2: while z≥ 2n do
3: zL← z mod 2n { then least significant bits ofz are assigned tozL }
4: zH ← bz/2nc { z is shiftedn bits to the right and assigned tozH }
5: z← zH ·c + zL

6: end while
7: if z≥ p then z← z− p end if
8: return z

The implementation depicted in Algorithm 1 is adapted from the iterative division algorithm by
Mohan and Adiga [20] (a similar method is also described in [16] and [12, pp. 64–65]). Note that
the quotientbz/2nc is trivial to compute by shiftingz to the right byn bit positions. Finding the
integerszL andzH is especially easy whenn equals the wordsize of the target processor. In this
case, no bit-level shifts are needed to alignzH for the multiplication byc.

The number of loop iterations depends on the magnitude ofz. It can be shown that the loop
iterates at most twice whenz is a 2n-bit integer withz< p2 (see [12]). Larger values ofz may
necessitate additional iterations. In general, any iteration of the loop decreases the length ofz by
n−dlog2(c)e bits. The “multiply-and-accumulate” strategy for polynomial multiplication requires
to reduce a cumulative sum of up tom coefficient-products (see Figure 1), which means that the
bitlength of the quantity to reduce is 2n+ dlog2(m)e, provided that all coefficientsai , b j are at most
n bits long. As a consequence, Algorithm 1 may need to perform more than two iterations. To
give a concrete example, let us assume thatp is a 32-bit PM prime, i.e.p = 232−c, andc is no
longer than 16 bits due to Definition 1. Let us further assume that we have an extension degree
of m= 5, which means that a cumulative sum ofm coefficient-products is up to 67 bits long. We
write this sum asz= zH ·232+zL, wherebyzH represents the 35 most significant bits andzL the 32
least significant bits ofz, respectively. The first iteration of the while-loop reduces the length ofz
from 67 bits to 51 bits or even less. After the third iteration, the numberz is either fully reduced or
at most 33 bits long, so that a final subtraction ofp is sufficient to guaranteez< p.

It can be formally proven that forn = 32, log2(c)≤ 16, and reasonable extension degreesm, at
most three iterations of the while-loop (i.e. three multiplications byc) and at most one subtraction
of p are necessary to bring the result within the desired range of[0, p−1]. We refer the interested
reader to [12, 28] for a more detailed treatment.

Extension field reduction: Polynomial multiplication and reduction of the coefficient-products
modulo p yields in a polynomialc(t) of degree 2m−2 with coefficientsck ∈GF(p). This poly-
nomial must be reduced modulo the irreducible polynomialx(t) = tm−ω in order to obtain the

final result. The extension field reduction can be accomplished in linear time sincex(t) is a monic
irreducible binomial. Givenx(t) = tm−ω, the following congruences hold:tm≡ ω modx(t),
tm+1≡ ω ·t modx(t), . . . , t2m−2≡ ω ·tm−2 modx(t). We can therefore reducec(t) modulo the
binomialx(t) by simply replacing all terms of the formck ·tk, k≥m, by ck ·ω ·tk−m, which leads to
the following equation for the residuer(t) = c(t) modx(t).

r(t) =
m−1∑
l=0

r l · t l with rm−1 = cm−1 and r l = (cl+m ·ω +cl) mod p for 0≤ l ≤m−2 (8)

The entire reduction ofc(t) modulo the binomialx(t) = tm−ω costs at mostm−1 multiplications
of coefficientsck by ω and the same number of subfield reductions [3].

In summary, the straightforward way of multiplying two elementsa(t),b(t) ∈GF(pm) requires
m2 +m−1 coefficient multiplications and 3m−2 reductions modulop. Special optimizations,
such as Karatsuba’s method or the “interleaving” of polynomial multiplication and extension field
reduction, allow to minimize the number of subfield operations (see [12] for details).

3.2. Inversion

Inversion in an OEF can be accomplished either with the extended Euclidean algorithm or via a
modification of the Itoh-Tsujii algorithm (ITA) [13], which reduces the problem of extension field
inversion to subfield inversion [3]. The ITA computes the inverse of an elementa(t) ∈GF(pm) as

a−1(t) = (ar(t))−1 ·ar−1(t) modx(t) where r =
pm−1
p−1

= pm−1 + · · ·+ p2 + p+1 (9)

Efficient calculation ofar−1(t) is performed by using an addition-chain constructed from thep-adic
representation ofr−1 = (111. . .110)p. This approach requires to raise field elements to thepi-th
powers, which can be done with help of thei-th iterate of the Frobenius map [4]. The remaining
operation is the inversion ofar(t) = ar−1(t) ·a(t). Computing the inverse ofar(t) is easy due to the
fact that for any elementα ∈GF(pm), ther-th power ofα, i.e.α(pm−1)/(p−1) is always an element
of the subfield GF(p). Thus, the computation of(ar(t))−1 requires just an inversion in GF(p) and
we can use a single-precision variant of the extended Euclidean algorithm for that purpose.

In summary, the efficiency of the ITA in an OEF relies mainly on the efficiency of the extension
field multiplication (to obtainar−1(t)) and the subfield inversion (see [4, 12]).

4. The MIPS32 architecture

The MIPS32 architecture is a superset of the older MIPS I and MIPS II instruction set architec-
tures and incorporates new instructions for standardized DSP operations like “multiply-and-add”
(MADD) [19]. MIPS32 uses a load/store data model with 32 general-purpose registers of 32 bits
each. The fixed-length, regularly encoded instruction set includes the usual arithmetic/logical
instructions, load and store instructions, jump and branch instructions, as well as co-processor
instructions. All branches in MIPS32 have an architectural delay of one instruction. The instruction
immediately following a branch (i.e. the instruction in the so-calledbranch delay slot) is always
executed, regardless of whether the branch is taken or not.

The MIPS32 architecture defines that the result of a multiply (MULT) or multiply-and-add (MADD)
operation to be placed in two special result/accumulation registers, referenced by the namesHI and

Memory
(Cache) Registers IU

rs rt

MDU

HI LO
hi part lo partrd

load

store

Figure 2. 4Km datapath with integer unit (IU) and multiply/divide unit (MDU)

LO (see Figure 2). Using the “move-from-HI” (MFHI) and “move-from-LO” (MFLO) instructions,
these values can be transferred to the general-purpose register file. TheMADD instruction multiplies
two 32-bit operands and adds the product to the 64-bit concatenated values in theHI/LO register
pair. Then, the resulting value is written back to theHI andLO registers. MIPS32 also provides a
MADDU (“multiply-and-add unsigned”) instruction, which performs essentially the same operation
asMADD, but interprets the operands as unsigned integers.

The 4Km processor coreis a high-performance implementation of the MIPS32 instruction set
[18]. Key features of the 4Km are a five-stage, single-issue pipeline with branch control, and
a fast multiply/divide unit (MDU) with a (32×16)-bit multiplier. Most instructions occupy the
execute stage of the pipeline only for a single cycle. However, load operations require an extra cycle
to complete before they exit the pipeline. The 4Km interlocks the pipeline when the instruction
immediately following the load instruction uses the contents of the loaded register. Optimizing
MIPS32 compilers try to fill load delay slots with useful instructions.

The MDU works autonomously, which means that the 4Km has a separate pipeline for multiply,
multiply-and-add, and divide operations (see Figure 2). This pipeline operates in parallel with the
integer unit (IU) pipeline and does not necessarily stall when the IU pipeline stalls. Note that
a (32×32)-bit multiply operation passes twice through the multiplier, i.e. it has a latency of two
cycles. However, the 4Km allows to issue an IU instruction during the latency period of the multiply
operation, provided that the IU instruction does not depend on the result of the multiply. This
“parallelism” is possible since theMULT instruction does not occupy the ports of the register file in
the second cycle of its execution. Therefore, long-running (multi-cycle) MDU operations, such as
a (32×32)-bit multiply or a divide, can be partially masked by other IU instructions.

4.1. Implementation aspects of OEF arithmetic on MIPS32 processors

In the following we discuss limitations and disadvantageous properties of the MIPS32 architec-
ture with respect to the efficient implementation of OEF arithmetic. Multiplication is by far the
most important field operation and has a significant impact on the overall performance of elliptic
curve cryptosystems defined over OEFs. This is the case for both affine and projective coordinates
since the efficiency of the Itoh-Tsujii inversion depends heavily on fast extension field multipli-
cation (see Subsection 3.2). At a first glance, it seems that theMADDU instruction facilitates the
“multiply-and-accumulate” strategy for polynomial multiplication. However, the 64-bit precision
of the result/accumulation registersHI, LO is a substantial drawback in this context.

Before going into further detail, let us mention the following recommendation of the NESSIE
Consortium3 regarding the selection of domain parameters for elliptic curve cryptography [22].

3NESSIE (New European Schemes for Signatures, Integrity, and Encryption) was a project within the Information
Society Technologies (IST) Programme of the European Commission. The main objective of the project was to put
forward a portfolio of strong cryptographic primitives that has been evaluated using a transparent and open process.

The elliptic curve should be carefully chosen and the finite field should be at least of
size 160 bits, which should be sufficient for medium term security (5 to 10 years).

Since 160 is a multiple of 32, it is obvious to use an OEF defined by a 32-bit pseudo-Mersenne prime
and an extension degree ofm= 5. A typical example is the finite field GF(pm) with p = 232−5
andm= 5, which has an order of 160 bits. As stated in Subsection 3.1, the multiplication of two
polynomialsa(t),b(t) ∈GF(pm) is performed bym2 multiplications of the corresponding 32-bit
coefficientsai ,b j ∈GF(p). The coefficient-productsai ·b j can be up to 64 bits long, which means
that a cumulative sum of several 64-bit products exceeds the 64-bit precision of theHI/LO register
pair. Therefore, theMADDU instruction cannot be used to implement the “multiply-and-accumulate”
strategy for polynomial multiplication, simply because the addition of 64-bit coefficient-products
to a running sum stored in theHI/LO registers would cause an overflow and loss of precision.

The straightforward way to overcome this problem is to use a smaller primep, e.g. a 28-bit
prime instead of a 32-bit one, so that the accumulation ofm coefficient-products will not overflow
the 64-bitHI/LO register pair. However, when the bitlength ofp is less than 32 bits, we need a larger
extension degreem in order to obtain an OEF of sufficient size, e.g.m= 6 instead of 5. The value
of m determines the number of coefficient-products that have to be computed when multiplying
two elementsa(t),b(t) ∈GF(pm). For instance, an extension degree ofm= 6 requires to carry out
m2 = 36 coefficient multiplications (excluding the extension field reduction), which represents an
increase of 44% over the 25 coefficient multiplications needed whenm= 5.

Using a pseudo-Mersenne primep = 2n−c with n < 32 entails a second disadvantage. The
reduction of a sum of coefficient-products according to Algorithm 1 requires to write the sumz
asz= zH ·2n +zL, wherebyzL represents then least significant bits ofz andzH includes all the
remaining (i.e. higher) bits ofz. Extracting the integerszH andzL from z is trivial whenn is the
same as the wordsize of the processor, i.e.n = 32, since in this case no bit-manipulations have to be
performed. However, whenn < 32, we are forced to carry out shifts of bits within words in order to
obtain the higher partzH . In addition to these bit manipulations, a number of data transfers between
general-purpose registers and the accumulation registersHI, LO are required before we can do the
actual reduction by computation ofzH ·c+zL (see line 5 of Algorithm 1).

5. Proposed extensions to MIPS32

As mentioned before, theMADDU instruction can be used to implement polynomial multiplication
according to the “multiply-and-accumulate” strategy, provided that the bitlength of the coefficients
is less than 32. However, this constraint competes with the optimal use of theMADDU instruction and
the attempt to exploit the full precision of the processor’s registers and datapath, respectively. The
performance of the multiplication in GF(pm), p = 2n−c, is mainly determined by the processor’s
ability to calculate a sum of up tom coefficient-products, and the ability to perform the reduction
of this sum modulop in an efficient manner. Some properties of the MIPS32 architecture — such
as the 64-bit precision of the concatenated result/accumulation registersHI andLO — are clearly
disadvantageous for the implementation of OEF arithmetic.

5.1. Multiply/accumulate unit with a 72-bit accumulator

Efficient OEF arithmetic requires exploiting the full 32-bit precision of the registers, and hence
the primep should also have a length of 32 bits. The elements of an OEF are polynomials with
coefficients from the subfield GF(p). Therefore, an implementation of polynomial multiplication

Format Description Operation

MADDU rs, rt Multiply and ADD Unsigned (HI/LO)← (HI/LO)+ rs×rt
MADDH rs Multiply and ADD HI register (HI/LO)← HI×rs+LO
SUBC rs Subtract Conditionally from HI/LO if (HI 6= 0) then(HI/LO)← (HI/LO)− rs

Table 1. Format and description of useful instructions for OEF arithmetic

for 32-bit coefficients would greatly profit from a multiply/accumulate (MAC) unit with a “wide”
accumulator so that a certain number of 64-bit coefficient-products can be summed up without
overflow and loss of precision. For instance, extending the accumulator by eight guard bits allows
to accumulate up to 256 coefficient-products, which is sufficient for OEFs with an extension degree
of m≤ 256. However, when we have a 72-bit accumulator, we also need to extend the precision
of theHI register from 32 to 40 bits, so that theHI/LO register pair is able to accommodate 72 bits
altogether. The extra hardware cost is negligible, and a slightly longer critical path in the MAC
unit’s final adder is no significant problem for most applications.

Multiplying two polynomialsa(t),b(t) ∈GF(pm) according to the product scanning technique
comprisesm2 multiplications of 32-bit coefficients and the reduction of 2m−1 column sums mod-
ulo p (without considering the extension field reduction). The calculation of the column sums
depicted in Figure 1 can be conveniently performed with theMADDU instruction since the wide
accumulator and the 40-bitHI register prevent overflows. After the summation of all coefficient-
productsai ·b j of a column, the 32 least significant bits of the column sum are located in theLO
register, and the (up to 40) higher bits reside in registerHI. Therefore, the content of registerHI and
LO correspond to the quantitieszH andzL of Algorithm 1 sincep is a 32-bit prime, i.e.n = 32.

5.2. Custom instructions

Besides coefficient multiplications, also the subfield reductions can contribute significantly to
the overall execution time of OEF arithmetic operations. This motivated us to design two custom
instructions for efficient reduction modulo a PM prime similar to Algorithm 1. Our first custom
instruction is namedMADDH and multiplies the content of registerHI by the content of a source
registerrs, adds the value of registerLO to the product, and stores the result in theHI/LO register
pair (see Table 1). This is exactly the operation carried out at line 5 of Algorithm 1. TheMADDH
instruction interprets all operands as unsigned integers and shows therefore some similarities with
theMADDU instruction. However, it must be considered that the extended precision of theHI register
requires a larger multiplier, e.g. a (40×16)-bit multiplier instead of the conventional (32×16)-bit
variant. The design and implementation of a (40×16)-bit multiplier able to execute theMADDH
instruction and all native MIPS32 multiply and multiply-and-add instructions is straightforward.

Our second custom instruction,SUBC, performs a conditional subtraction whereby the minuend
is formed by the concatenated value of theHI/LO register pair, and the subtrahend is given by the
value of a source registerrs (see Table 1). The subtraction is only carried out when theHI register
holds a non-zero value, otherwise no operation is performed.SUBC writes its result back to the
HI/LO registers. We can use this instruction to realize an operation similar to the one specified at
line 7 of Algorithm 1. However, theSUBC instruction uses the content of theHI register to decide
whether or not to carry out the subtraction, i.e. it makes a comparison to 2n instead ofp = 2n−c.
This comparison is easier to implement, but may entail a not fully reduced result even though it
will always fit into a single register. In general, when performing calculations modulop, it is not
necessary that the result of a reduction operation is always the least non-negative residue modulo
p, which means that we can continue the calculations with an incompletely reduced result.

label: LW $t0, 0($t1) # load A[i] into $t0
LW $t2, 0($t3) # load B[j] into $t2
ADDIU $t1, $t1, 4 # increment address in $t1 by 4
MADDU $t0, $t2 # (HI|LO)=(HI|LO)+($t0*$t2)
BNE $t3, $t4, label # branch if $t3!=$t4
ADDIU $t3, $t3, -4 # decrement address in $t3 by 4
MADDH $t5 # (HI|LO)=(HI*$t5)+LO
MADDH $t5 # (HI|LO)=(HI*$t5)+LO
MADDH $t5 # (HI|LO)=(HI*$t5)+LO
SUBC $t6 # if (HI!=0) then (HI|LO)=(HI|LO)-$t6

Figure 3. Calculation of a column sum and subfield reduction

5.3. Implementation details and performance evaluation

In the following, we demonstrate how OEF arithmetic can be implemented on an extended
MIPS32 processor, assuming that the two custom instructionsMADDH andSUBC are available. We
developed a functional, cycle-accurate SystemC model of a MIPS32 4Km core in order to verify
the correctness of the arithmetic algorithms and to estimate their execution times. Our model is
based on a simple, single-issue pipeline and implements a subset of the MIPS32 ISA, along with
the two custom instructionsMADDH andSUBC. While load and branch delays are considered in our
model, we did not simulate the impact of cache misses, i.e. we assumed a perfect cache system.

The code snippet depicted in Figure 3 calculates a column sum of coefficient-productsai ·b j and
performs a subfield reduction, i.e. the column sum is reduced modulo a PM primep (see Sub-
section 3.1). For example, the instruction sequence can be used to calculate the coefficientc3 as
illustrated in Figure 1 and formally specified by Equation (4). The first six instructions implement
a loop that multiplies two coefficientsai ,b j and adds the coefficient-product to a running sum in
theHI/LO register pair. After termination of the loop, the column sum is reduced modulop with
help of the last four instructions. The polynomialsa(t),b(t) are stored in arrays of unsigned 32-bit
integers, which are denoted asA andB in Figure 3. Before entering the loop, register$t1 and$t3
are initialized with the address ofa0 andb3, respectively. TwoADDIU instructions, which perform
simple pointer arithmetic, are used to fill a load delay slot and the branch delay slot. Register$t3
holds the current address ofb j and is decremented by 4 each time the loop repeats, whereas the
pointer to the coefficientai (stored in register$t1) is incremented by 4. The loop terminates when
the pointer tob j reaches the address ofb0, which is stored in$t4.

Once the column sum has been formed, it must be reduced modulop in order to obtain the
coefficientc3 as final result. The last four instructions of the code snippet implement the reduction
modulo a 32-bit PM primep = 2n−c similar to Algorithm 1. As explained in Subsection 3.1, at
most three multiplications byc and at most one subtraction ofp are necessary to guarantee that the
result is either fully reduced or at most 32 bits long. TheMADDH instructions implement exactly the
operation at line 5 of Algorithm 1, provided that register$t5 holds the offsetc. At last, theSUBC
instruction performs the final subtraction whenp is stored in$t6.

The execution time of the instruction sequence depicted in Figure 3 depends on the implemen-
tation of the multiplier. An extended MIPS32 processor with a (40×16)-bit multiplier and a 72-bit
accumulator executes an iteration of the loop in six clock cycles, provided that no cache misses
occur. TheMADDU instruction writes its result to theHI/LO register pair (see Figure 2) and does not
occupy the register file’s read ports and write port during the second clock cycle. Therefore, other
arithmetic/logical instructions, such as theBNE instruction in Figure 3, can be executed during the
latency period of theMADDU operation. On the other hand, theMADDH instructions requires only a

single clock cycle to produce its result on a (40×16)-bit multiplier, provided that the multiplier
implements an “early termination” mechanism. According to Definition 1, the offsetc is at most
16 bits long whenp is a 32-bit PM prime, which means that a multiplication byc requires only one
pass through the multiplier. The operation performed by theSUBC instruction is very simple, and
thus it can be easily executed in one clock cycle. In summary, the four instructions for a subfield
reduction require only four clock cycles altogether.

Experimental results: We implemented the arithmetic operations for a 160-bit OEF defined by
the following parameters:p = 232−5, m= 5, andx(t) = t5−2. Our simulations show that a full
OEF multiplication (including extension field reduction) executes in 406 clock cycles, which is
almost twice as fast as a “conventional” software implementation that uses only native MIPS32
instructions. This difference is due to the reasons mentioned in Subsection 4.1. The OEF squaring
executes in 345 cycles on our extended MIPS32 model. These timings were achieved without loop
unrolling and without special optimizations like Karatsuba’s algorithm. An elliptic curve scalar
multiplicationk·P can be performed in 940k clock cycles when projective coordinates are used in
combination with the binary NAF method (see [12] for details). On the other hand, we were not able
to implement the scalar multiplication in less than 1.75M cycles on a standard MIPS32 processor.
In summary, the proposed architectural enhancements achieve a speed-up factor of 1.8.

Reduction modulo PM primes of less than 32 bits:In order to ensure compatibility with other
systems, it may be necessary to handle PM primes with a bitlength of less than 32. The proposed
extensions are also useful for shorter primes, e.g. the 31-bit primep = 231−1. This is possible
by performing all subfield reduction operations modulo a 32-bitnear-prime q= d ·p instead of the
original primep. A near-prime is a small multiple of a prime, e.g.q = 2·(231−1) = 232−2. All
residues obtained through reduction byq are congruent to the residues obtained through reduction
by the “original” primep. Therefore, we can carry out a full elliptic curve scalar multiplication
with a 32-bit near-primeq instead ofp, using the same software routines. However, at the very end
of the calculation, an extra reduction of the coefficients modulop is necessary.

6. Conclusions

We proposed simple extensions for efficient OEF arithmetic on MIPS32 processors. A wide
accumulator allows for convenient calculation of column sums with help of theMADDU instruction,
whereas a (40×16)-bit multiplier along with the two custom instructionsMADDH andSUBC makes
it possible to perform a reduction modulo a PM prime in only four clock cycles. Our simulations
show that an extended MIPS32 processor is able to execute a multiplication in a 160-bit OEF in
only 406 clock cycles, which is almost twice as fast as a conventional software implementation
with native MIPS32 instructions. A full elliptic curve scalar multiplication over a 160-bit OEF
requires approximately 940k clock cycles. The proposed extensions are simple to integrate into
a MIPS32 core since the required modifications/adaptions are restricted to the instruction decoder
and the multiply/divide unit (MDU). A fully parallel (i.e. single-cycle) multiplier is not necessary
to reach peak performance. The extra hardware cost for a (40×16)-bit multiplier is marginal when
we assume that the “original” processor is equipped with a (32×16)-bit multiplier.

Acknowledgements: The first author has been supported by the Austrian Science Fund (FWF)
under grant number P16952-N04 (“Instruction Set Extensions for Public-Key Cryptography”). The
work described in this paper has been supported in part by the European Commission through the
IST Programme under contract IST-2002-507932 ECRYPT.

References

[1] ARM Limited. ARM Architecture Reference Manual. ARM Doc No. DDI-0100, Issue H, Oct. 2003.
[2] R. M. Avanzi and P. Mih̆ailescu. Generic efficient arithmetic algorithms for PAFFs (processor adequate finite fields)

and related algebraic structures. InSelected Areas in Cryptography — SAC 2003, vol. 3006 ofLecture Notes in
Computer Science, pp. 320–334. Springer Verlag, 2004.

[3] D. V. Bailey and C. Paar. Optimal extension fields for fast arithmetic in public-key algorithms. InAdvances in
Cryptology — CRYPTO ’98, vol. 1462 ofLecture Notes in Computer Science, pp. 472–485. Springer Verlag, 1998.

[4] D. V. Bailey and C. Paar. Efficient arithmetic in finite field extensions with application in elliptic curve cryptogra-
phy. Journal of Cryptology, 14(3):153–176, Summer 2001.

[5] I. F. Blake, G. Seroussi, and N. P. Smart.Elliptic Curves in Cryptography.Cambridge University Press, 1999.
[6] R. E. Crandall. Method and apparatus for public key exchange in a cryptographic system. U.S. Patent No.

5,159,632, Oct. 1992.
[7] W. Diffie and M. E. Hellman. New directions in cryptography.IEEE Transactions on Information Theory,

22(6):644–654, Nov. 1976.
[8] A. M. Fiskiran and R. B. Lee. PAX: A datapath-scalable minimalist cryptographic processor for mobile environ-

ments. To be published inEmbedded Cryptographic Hardware: Design and Securityby Nova Science Publishers.
[9] J. R. Goodman.Energy Scalable Reconfigurable Cryptographic Hardware for Portable Applications. Ph.D. Thesis,

Massachusetts Institute of Technology, Cambridge, MA, USA, 2000.
[10] J. Großscḧadl and G.-A. Kamendje. Architectural enhancements for Montgomery multiplication on embedded

RISC processors. InApplied Cryptography and Network Security — ACNS 2003, vol. 2846 ofLecture Notes in
Computer Science, pp. 418–434. Springer Verlag, 2003.

[11] J. Großscḧadl and G.-A. Kamendje. Instruction set extension for fast elliptic curve cryptography over binary
finite fields GF(2m). In Proceedings of the 14th IEEE International Conference on Application-specific Systems,
Architectures and Processors (ASAP 2003), pp. 455–468. IEEE Computer Society Press, 2003.

[12] D. R. Hankerson, A. J. Menezes, and S. A. Vanstone.Guide to Elliptic Curve Cryptography. Springer Verlag, 2004.
[13] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses inGF(2m) using normal bases.

Information and Computation, 78(3):171–177, Sept. 1988.
[14] A. A. Karatsuba and Y. P. Ofman. Multiplication of multidigit numbers on automata.Doklady Akademii Nauk

SSSR, 145(2):293–294, 1962. English translation inSoviet Physics - Doklady, 7(7):595–596, 1963.
[15] Ç. K. Koç, T. Acar, and B. S. Kaliski. Analyzing and comparing Montgomery multiplication algorithms.IEEE

Micro, 16(3):26–33, June 1996.
[16] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.Handbook of Applied Cryptography. CRC Press, 1996.
[17] P. Mihăilescu. Optimal Galois field bases which are not normal. Presentation at the Recent Results Session of the

4th Fast Software Encryption Workshop (FSE ’97), Haifa, Israel, Jan. 1997.
[18] MIPS Technologies, Inc. MIPS32 4Km™ Processor Core Datasheet. Available for download athttp://www.

mips.com/publications/index.html, Sept. 2001.
[19] MIPS Technologies, Inc. MIPS32™ Architecture for Programmers. Available for download athttp://www.

mips.com/publications/index.html, Mar. 2001.
[20] S. B. Mohan and B. S. Adiga. Fast algorithms for implementing RSA public key cryptosystem.Electronics Letters,

21(17):761, Aug. 1985.
[21] S. F. Moore. Enhancing security performance through IA-64 architecture. Technical presentation at the 9th Annual

RSA Conference (RSA 2000), San Jose, CA, USA, Feb. 2000.
[22] NESSIE Consortium. Portfolio of recommended cryptographic primitives. NESSIE Report, Feb. 2003. Available

for download athttp://www.cryptonessie.org.
[23] A. M. Odlyzko. Discrete logarithms: The past and the future.Designs, Codes and Cryptography, 19(2/3):129–145,

Mar. 2000.
[24] B. J. Phillips and N. Burgess. Implementing 1,024-bit RSA exponentiation on a 32-bit processor core. InPro-

ceedings of the 12th IEEE International Conference on Application-specific Systems, Architectures and Processors
(ASAP 2000), pp. 127–137. IEEE Computer Society Press, 2000.

[25] S. Ravi, A. Raghunathan, N. R. Potlapally, and M. Sankaradass. System design methodologies for a wireless
security processing platform. InProceedings of the 39th Design Automation Conference (DAC 2002), pp. 777–782.
ACM Press, 2002.

[26] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and public key cryptosys-
tems.Communications of the ACM, 21(2):120–126, Feb. 1978.

[27] N. P. Smart. A comparison of different finite fields for elliptic curve cryptosystems.Computers and Mathematics
with Applications, 42(1-2):91–100, July 2001.

[28] A. D. Woodbury, D. V. Bailey, and C. Paar. Elliptic curve cryptography on smart cards without coprocessors. In
Smart Card Research and Advanced Applications, pp. 71–92. Kluwer Academic Publishers, 2000.

The information in this document reflects only the authors’ views, is provided as is and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

http://www.mips.com/publications/index.html
http://www.mips.com/publications/index.html
http://www.mips.com/publications/index.html
http://www.mips.com/publications/index.html
http://www.cryptonessie.org

	Introduction
	Related work
	Contributions of this work and paper outline

	Optimal Extension Fields
	Arithmetic in Optimal Extension Fields
	Multiplication and squaring
	Inversion

	The MIPS32 architecture
	Implementation aspects of OEF arithmetic on MIPS32 processors

	Proposed extensions to MIPS32
	Multiply/accumulate unit with a 72-bit accumulator
	Custom instructions
	Implementation details and performance evaluation

	Conclusions

