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Abstract. Pervasive networks with low-cost embedded 8-bit processors
are set to change our day-to-day life. Public-key cryptography provides
crucial functionality to assure security which is often an important re-
quirement in pervasive applications. However, it has been the hardest
to implement on constraint platforms due to its very high computa-
tional requirements. This contribution describes a proof-of-concept im-
plementation for an extremely low-cost instruction set extension using
reconfigurable logic, which enables an 8-bit micro-controller to provide
full size elliptic curve cryptography (ECC) capabilities. Introducing full
size public-key security mechanisms on such small embedded devices will
allow new pervasive applications. We show that a standard compliant
163-bit point multiplication can be computed in 0.113 sec on an 8-bit
AVR micro-controller running at 4 Mhz with minimal extra hardware, a
typical representative for a low-cost pervasive processor. Our design not
only accelerates the computation by a factor of more than 30 compared
to a software-only solution, it also reduces the code-size, data-RAM and
power requirements.

1 Introduction

Ubiquitous computing with low cost pervasive devices has started to become re-
ality with RFID applications and smart textiles. These computing devices form
large-scale collaborating networks by exchanging information. Privacy and secu-
rity of this information is important for the overall reliability of these networks
and ultimately to the trustworthiness of pervasive applications. In fact, security
is often viewed as a crucial feature, a lack of which can be an obstacle to the
wide-spread introduction of pervasive applications.

High-volume, low-cost and very small power budgets of pervasive devices im-
plies they have limited computing power, often not exceeding an 8-bit processor
clocked at a few MHz. Under these constraints, secure public-key cryptography
for authentication are nearly infeasible in software and are therefore usually not
available in these systems. On the other hand, public-key cryptography offers
major advantages when designing security solutions in pervasive networks. An
alternative is to use a cryptographic co-processor such as used for high security
applications like smart-cards, but its downside are considerable costs (in terms



of power and chip area) which makes it unattractive for many cost sensitive
pervasive applications. In addition, a fixed hardware solution may not offer the
cryptographic flexibility (i.e., change of parameters or key length) that can be
required in real-world applications. An instruction set extension (ISE) is a more
viable option because of the smaller amount of additional hardware required and
because of its flexibility. The efficiency of an ISE is not just measured by the
speed-up it achieves, but also in the decrease in code-size, data-RAM and power
consumption.

We use reconfigurable hardware attached to an 8-bit processor to simulate
the ISE and to obtain reliable cost/benefit estimates. However, we view the
reconfigurability not only useful for prototyping purposes, but a small reconfig-
urable hardware extension is also an attractive platform for embedded devices
as the extension can offer many speed and power benefits for computationally
intensive applications as demonstrated in this paper. It should be noted that
public-key operations are typically only needed at the initial or final stage of
a communication session. Hence, it is perceivable that the ISE can be runtime
reconfigured for other applications when public-key operations are not required.

The paper is organized as follows. Section 2 discusses previous work in this
field. In Sect. 3 we describe ISEs and in Sect. 4 the mathematical background
of ECC is discussed. Section 5 discusses our implementation and results.

2 Previous work

The use of group of points of an elliptic curve in cryptography was first sug-
gested by Neal Kobilitz [14] and independently by Victor Miller [17]. There has
been considerable work since then on efficient implementation of ECC in soft-
ware, typically targeting high end processors [19, 21, 7, 9]. In the following is a
discussion of ECC implementations on constrained environment.

ECC on 8-bit processors have been reported in [5] and [22], both implemented
over Optimal Extension Fields (OEF’s), originally introduced in [2]. It should
be noted that OEFs are not standardized, and their security in conjunction of
ECC is not clear. In [5], the ECC implementation is over the field Fpm with
p = 216 − 165, m = 10, and irreducible polynomial f(x) = x10 − 2. A perfor-
mance of 122 msec at 20 Mhz is reported for a 160-bit point multiplication. The
sub-field multiplication is done using the math co-processor. [22] implements
ECC over GF ((28−17)17) on an 8051 micro-controller without co-processor but
instead uses the internal 8-by-8-bit integer multiplier. The authors achieve a
speed of 1.95 sec for a 134-bit fixed point multiplication using 9 pre-computed
points and 8.37 sec for a general point multiplication using binary method of
exponentiation. In [15], the authors improve the general point multiplication, to
set up an end-to-end wireless ECDH key exchange within 3 sec on a Chipcon
CC1010, which is based on the 8051 architecture. An ECDSA implementation
on a 16-bit microcomputer M16C, running at 10 Mhz, is described in [10]. The
authors propose the use of a field Fp where prime characteristic p = e2c ± 1,
e an integer within the machine size and c a multiple of machine word size.



The implementation uses a 31-entry table of precomputed points to generate an
ECDSA signature in 150 msec and ECDSA verification takes 630 msec. A scalar
multiplication of a random point takes 480 msec. The authors in [7] describe an
efficient implementation of ECC over Fp on the 16-bit TI MSP430x33x family of
low-cost micro-controllers running at 1 Mhz. A scalar point multiplication over
GF (2128 − 297 − 1) is performed in 3.4 sec without any precomputation.

It should be stressed that all previous ECC implementations on 8-bit proces-
sors have been based on non-standardized ECC parameters in order to overcome
the performance bottleneck. This has two disadvantages: first, such solutions
are incompatible with standardized protocols; secondly, there is always the pos-
sibility that non-standardized parameters have security shortcomings, e.g., new
attacks through special mathematical properties introduced in non-standardized
underlying finite fields.

Another approach has been to add a crypto co-processor to these micro-
controllers. A survey of commercially available co-processors can be found in
[8]. However, a full-size ECC co-processor is may be prohibitively expensive
for many pervasive applications. Hardware assistance in terms of Instruction
Set Extensions (ISE) is more favorable as the cost of extra hardware is quite
negligible compared to the whole processor. Previous attempts in this direction
[6, 13] are only reported for ECC with not more than 133-bits.

3 Instruction Set Extension

The Instruction Set Architecture (ISA) of a microprocessor is the unique set
of instructions that can be executed on the processor. General purpose ISA
are often insufficient to satisfy the special computational needs in cryptographic
applications. A more promising method is extending the ISA to build Application
Specific Instruction-set Processors (ASIP.)

There are different ways of extending a processor. We consider an extension
as shown in Fig. 1. Here the additional hardware is closely coupled with the
arithmetic logic unit (ALU) of the processor, reducing the interface circuitry.
The control circuit of the processor is extended to support this extra hardware.
The extension can also directly access the data-RAM which is important if the
computation is done over several data elements. For multi-cycle instructions,
the software has to take special care not to call the custom hardware until the
multi-cycle operation is completed.

An efficient ISE implementation requires a tightly coupled hardware and
software co-design. In a first step, we used a software-only implementation of
ECC to identify the functional elements and code-segments that would provide
efficiency gains if implemented as an ISE. Then, a hardware model of the new
processor determines the effects of the new extension on the parameters running
time, code-size and data-RAM usage.
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Fig. 1. Processor Core with Extension

4 Elliptic Curve Cryptography

Among public-key algorithms, there are three established families: RSA, DL and
elliptic curve cryptography (ECC.) Among them, ECC is considered the most
attractive one for embedded environments [4] due to its smaller operand lengths
and relatively lower computational requirements. ECC is also standardized [18,
1, 11, 12] and has become a commercially accepted method. ECC is an universal
public-key family, allowing mechanisms such as digital signature, key exchange
and data encryption. The vast majority of modern protocols, including wireless
protocols attractive for pervasive applications, require these public-key functions.
A more detailed description of the main operations for an ECC realization can
be found in, e.g., [3].

4.1 Elliptic Curves

An elliptic curve over F2m is of the form y2 + xy = x3 + ax2 + b, where a, b ∈
F2m and b 6= 0. (x, y) satisfying this equation is called a point P on the curve.
Together with O, the identity element, they constitute an abelian set E(F2m).
For our implementation, we use a NIST-recommended 163-bit random curve
[18].

The main EC cryptographic operation is the scalar point multiplication, Q =
k ·P, where P,Q are points on the elliptic curve and k is an m-bit integer.

4.2 Elliptic Curve Point Arithmetic

For the implementation of the scalar point multiplication, k ·P, we need to im-
plement the group operations point addition and point doubling. The arithmetic
is described in detail in [19]. For our implementation, we use the projective co-
ordinates where the projective point (X,Y, Z) with Z 6= 0 corresponds to the
affine point (x, y) where x = X

Z and y = Y
Z . This projective co-ordinate is chosen

because we use the Montgomery point multiplication introduced in [16].



The efficiency of EC group operations depends largely on the efficiency of
the underlying field arithmetic. We use the polynomial basis representation
(am−1...a1a0) with the reduction polynomial F (x) = x163 + x7 + x6 + x3 + 1. In
our implementation, an element from F2163 is represented as an array of 21 eight
bit words, with the five last most-significant bits being ignored.

Field Addition is the simplest of all operations, since it is a bit by bit addition
in F2 which maps to word-level XOR operation in software.

Field Multiplication of two elements is a polynomial multiplication followed
by reduction modulo F (x). The polynomial multiplication can be implemented
in software efficiently using the comb method.

Field Squaring is a simple expansion in F2m in polynomial basis which is effi-
ciently implemented as a table-lookup.

Field Reduction. Multiplication and squaring require reduction of the poly-
nomial of degree not greater than (2m− 1). Reduction is effectively done using
a table-lookup for the 8-bit locations in a byte.

5 Implementation

Our development platform is the Atmel Inc.’s AT94K family of FPSLIC devices
(Field Programmable System Level Integrated Circuits). This architecture in-
tegrates an AVR 8-bit micro-controller core (used widely in smart-cards and
micromotes), FPGA resources, several peripherals and 36K bytes SRAM within
a single chip. The platform is appealing for simulating an ISE. The implemen-
tations are done on the ATSTK94 FPSLIC demonstration board clocked at 4
Mhz.

We first implemented the ECC algorithm on the 8-bit AVR processor in
assembly. The results of the software only implementation is given in Table 1.
It is important to mention that the multiplication routine based on the comb
method that we used is among the fastest known software algorithms for Galois
field multiplication.

The analysis of the software-only implementation shows that F2mmultiplication
is the most costly operation with respect to execution time and memory require-
ment. Moreover, in the Montgomery algorithm (Sect. 4.2), field multiplications
are extremely frequent making it the bottleneck operation for ECC. A closer
look at the multiplication block showed that the major part of the time was
spent for load/store operations because of the small number of registers which
cannot hold the large operands. Therefore an ISE for this functional block which
also reduces the memory bottleneck can greatly speed-up ECC.

The popular approach to multimedia extensions has been to divide a large
32/64-bit data-bus into smaller 8-bit or 16-bit multimedia variables, and to run



Table 1. F2163 ECC software-only performance on an 8-bit AVR µC (@4 Mhz)

Operation Time (clocks) Code-size (bytes) Data RAM (bytes)

Addition 151 180 42
Multiplication 15044 384 147
Squaring 441 46 63
Reduction 1093 196 63

Point Multiplication (k.P ) 4.14 sec 8208 358

those in parallel as an SIMD instruction. But for public-key cryptographic appli-
cations the reverse is true: The operands are much larger than the data-path, re-
quiring many bit operations on long operands. For such applications, bit-parallel
processing is required where multiple data-words are operated upon simultane-
ously. One important issue here is the provision of the ISE with the operands.
We approached this situation by implementing a complete F2163 multiplier with
minimum possible area.
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Fig. 2. ISE Interface and Structure

Figure 2 shows the general layout of functional unit (FU) of the ISE we
are simulating. Four processor registers are initially loaded with the memory
addresses of the two operands A and B. The ISE is then initiated by a control
signal to the FU control (FUC) along with the first memory address byte. In
our proof-of-concept implementation, this behavior is achieved by sending the
byte over the data-lines from the processor to the FPGA, and confirming its
reception through interrupt-lines from the FPGA to the processor. After the
last memory address byte is received, the FUC initiates the memory load/store
circuit within the ISE to load both the 21-byte operands directly from the SRAM
in 21-cycles each. Then, the FUC runs the multiplier for 163-cycles to get the
result C. During this period, the processor loads the memory address of C,
sends it to the FPGA and goes into polling state for the final interrupt from
the FPGA. After the result C is obtained, the ISE stores it back directly in the
memory in another 21-cycles and then sends the final interrupt signalling the
completion of the multiplication. This method of handshaking leads to extra
control overheads which can be reduced by having a more tightly coupled ISE to
the processor without requiring confirmation interrupts. During the idle polling
state, the processor could also be used in other computational work which is



independent of the multiplication result. Memory access conflicts during such
computation between the processor and the ISE is avoided by using a dual
ported SRAM.

5.1 Bit-Serial Multiplier

A bit-serial F2m hardware multiplier is the most simple solution and requires the
least area. The core of the multiplier is as shown in Fig. 3. The reduction circuit
is hardwired here. A modification for implementing a more general reduction
polynomial or variable size multiplication is discussed in Sect. 5.3. A 163-by-163
multiplication is computed in 163 clocks, excluding data input and output. In our
implementation, control and memory access overheads lead to a total execution
time of 313 clocks. Since the multiplier is much faster than the squaring in
software, we use the multiplier also for squaring by loading A = B. The results
(Table 2) show a drastic speed-up using this multiplier. It should be noted that
the control overhead can be considerably reduced when the hardware is more
tightly coupled within the processor, e.g., in an ASIC implementation of our
architecture.
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Fig. 3. Bit-Serial LSB Multiplier
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5.2 Digit-Serial Multiplier

Another trade-off between area and speed is possible by using digit-serial multi-
pliers [20]. Compared to the bit-serial multiplier where only one bit of operand
B is used in each iteration, here multiple bits (equal to the digit-size) of B are
multiplied to the operand A in each iteration (Fig. 4). We use a digit size of
4 as it gives a good speed-up without drastically increasing the area require-
ments. A 163-by-163 multiplication with reduction requires 42 clocks. In our
implementation, the control overheads leads to a total of 193 clocks.



Table 2. ICE-based ECC point multiplication (@4 Mhz)

Multiplier Type CLBs Time (sec) Code-size (bytes) Data RAM (bytes)

Software-only 4.14 8208 358

163*163 multiplier 245 0.169 2048 273

163*163 digit-4 498 0.113 2048 273

5.3 A Flexible Multiplier

Flexibility of crypto algorithm parameters (especially operand lengths) can be
very attractive because of the need to alter them when deemed insecure in the
future, or for providing compatibility in different applications. Considering the
high-volume of pervasive devices, replacing each hardware component seems im-
probable. We discuss here how the multiplier can be made more flexible to satisfy
these needs.

Support of a generic reduction polynomial with a maximum degree of m of
the form F (x) = xm +G(x) = xm +

∑m−1
i=0 gix

i requires storage of the reduction
coefficients and additional circuitry as shown in Fig. 5 (a similar implementation
for a digit-serial multiplier is straightforward). The reduction polynomial can
be initialized once in the beginning of the point multiplication. Thus the total
number of clocks required for multiplication remains the same.
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g1

x

x

g0

x

g162

x

Ax mod F(x)

163A F 163

Fig. 5. Bit-serial reduction circuit

Different bit-length multipliers for different key-length ECC can also be sup-
ported using this structure. We show as an example, how the 163-bit multiplier
could be also used to multiply two 113-bit operands A′ and B′ with 113-bit
reduction polynomial G′.

The operands A, B and the reduction polynomial are initially loaded as

A = (a′112...a
′
1a
′
00...0) = A′x50

B = (0...0b′112...b
′
1b
′
0) = B′

G = (g′112...g
′
1g
′
00...0) = G′x50

If C ′ = A′ ·B′ mod F ′(x) then

A ·B mod F (x) = A′x50 ·B′ mod (F ′(x)x50) = C ′x50



Thus the result is stored in the most-significant bits of operand C after 113
clock cycles. The memory load/store circuit and the FU control unit takes care
to load the operands appropriately and to fetch the result after the required
number of clocks from the multiplier and store it back appropriately in memory.

6 Conclusions

Huge performance gains are possible in small 8-bit processors by introducing
small amounts of extra hardware. The results show 1–2 orders of magnitude
increase in speed-up for the ECC implementation. The hardware costs are in
the range of 250–500 extra CLBs. There is also saving in the code size and data
RAM usage for the algorithm. The performance gain due to the ISE can be
used to reduce the total power consumption of the devices by running the whole
device at a lower frequency, which can be a major benefit in wireless pervasive
applications. The proof-of-concept implementation can also be used directly as a
reconfigurable ISE. Since public-key exchange is done only in the initial phase of
the communication, the FPGA can be run-time reconfigured for an ISE suitable
for a different application (like signal processing) running later on the device.
Thus two different sets of ISEs can be run on the same constrained device,
accelerating both applications without increasing the total hardware cost.
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