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Abstract In this work, we present a survey of efficient techniques for software imple-
mentation of finite field arithmetic especially suitable for cryptographic applications.
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1. Introduction

Finite field (or Galois field) and finite ring arithmetic are an integral part of many
cryptographic algorithms. The main application domain is asymmetric algorithms
(also known as public-key algorithms), for instance algorithms based on the Discrete
Logarithm (DL) problem (the Diffie–Hellman (DH) key exchange protocol [16]
and the Digital Signature Algorithm (DSA) [36]), and in the group operations for
Elliptic Curve Cryptography (ECC) and Hyperelliptic Curve Cryptography (HECC).
A second application domain for finite fields in cryptography are inversions in small
fields which occur in the context of block ciphers, e.g., within the S-box of the
Advanced Encryption Standard (AES).

Though various efficient algorithms exist for finite field arithmetic for signal
processing applications, the algorithms suitable for practical cryptographic imple-
mentations vary due to the relatively large finite field structures used in asymmetric
cryptographic algorithms. For cryptographic applications, three different types of
finite fields and their special versions are most popular (as shown in Figure 1):

– Binary fields F2m ,
– Prime fields Fp,
– Extension fields Fpm

The security considerations determine the size of the finite fields used, and restric-
tions on the field parameters for each cryptographic application. Table 1 provides
the appropriate field sizes (in bit-length) used for different applications. Elliptic
Curve Cryptography (ECC) is, however, restricted to prime fields, binary fields, and
extension fields with only prime extensions because of the Weil descent attack on
the composite extensions [20]. There are also other restrictions on the binary and
extension fields based on Weil and Tate pairing attacks [23]. Also special fields are
generally chosen to allow a faster implementation of the algorithms. For prime fields,
normally generalized-Mersenne primes are chosen. For prime extensions fields, a
special class of fields called Optimal Extension Fields (OEFs) [2] are chosen which
allows fast implementation in software.

Finite Fields

Prime Fields
Fp

Binary Fields
F2

m

Extension Fields
Fp

m

General irreducible
polynomial

Irreducible trinomial 
or

pentanomial

Optimal Extension
Fields (OEF)

Composite Fields

General primes

Special primes
(Generalized 
Mersenne)

Figure 1 Finite field choices for cryptography.
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Table 1 Bit-length of finite fields used for different applications

Application Prime fields Binary fields Extension fields

ECC 160–512 160–512 160–512

HECC 40–256 40–256 40–256

DL (DH, DSA) 1,024–4,096 1,024–4,096 1,024–4,096

Block ciphers (AES) – 8 4

RS codes – 8–16 –

Signal processing – 8–16 –

The paper presents different finite field arithmetic algorithms suitable for the
cryptographic implementations in software on a standard or embedded micro-
processors. This paper is organized as follows: Section 2 introduces the notion of
fields and elements used in this paper. In Sections 3, 4, and 5 we describe software
implementation techniques for F2m , Fp, and Fpm , respectively. Section 6 concludes
this contribution.

2. Basis Representation

For the discussion that follows, it is important to point out that there are several
possibilities to represent elements of a finite field. The standard polynomial basis rep-
resentation is used mainly in this paper. In general, given an irreducible polynomial

F(x) = xm
+G(x) = xm

+

m−1∑
i=0

gi xi

where gi ∈ Fp. Let α be a root of F(x), then one can represent an element A∈ Fpm , p
prime, as a polynomial in α as

A(α) = am−1α
m−1
+ am−1α

m−1
+ · · · + a1α + a0, ai ∈ Fp. (1)

The set {1, α, α2, . . . , αm−1
} is then said to be a polynomial basis (or standard basis)

for the finite field Fpm over Fp .
Another type of basis is called a normal basis. Normal bases are of the form

{β, β p, β p2
, . . . , β pm−1

} for an appropriate element β ∈ Fpm . Then, an element B ∈ Fpm

can be represented as:

B(β) = bm−1β
pm−1
+ bm−2β

pm−2
+ · · · + b1β

p
+ b0β, bi ∈ Fp. (2)

It can be shown that for any field Fp and any extension field Fpm , there exists always
a normal basis of Fpm over Fp (see [30, Theorem 2.35]).
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3. Software Implementation Techniques Over F2m

In F2m , the polynomial in standard polynomial basis (Equation (1)) consists of bit
coefficients and therefore can also be represented as a bit vector: (am−1, ...a1, a0). In
software, this bit string is grouped into s = dm

w
e words where w is the word-length of

the processor (w is normally 8, 16, 32 or 64). Thus we can represent

A(α) =
∑s−1

i=0 Aiα
wi

where Ai =


(awi+(w−1) · · · awi+1awi ) for i ∈ {0, · · · , (s − 2)}

(0...0am−1am−2 · · · aw(s−1)) for i = s − 1

(3)

A is then stored as a word string (As−1...A1 A0) in the processor memory as shown in
Figure 2.

The F2m field arithmetic is implemented as polynomial arithmetic modulo F(x).
Notice that by assumption F(α) = 0 since α is a root of F(x). Therefore,

αm
= −G(α) =

m−1∑
i=0

giα
i , gi ∈ F2 (4)

gives an easy way to perform modulo reduction whenever we encounter powers of α

greater than m− 1. Throughout the text, we will write A mod F(α) to mean explicitly
the reduction step. Normally F(x) is chosen with least number of coefficients gi to
minimize the complexity of the arithmetic operations.

3.1. Addition

F2m addition is the simplest of all operations, since it is a bitwise addition in F2 which
maps to an XOR operation (⊕) over the words in software:

C ≡ A+ B mod F(α)

≡ (As−1 ⊕ Bs−1)α
w(s−1)

+ . . .+ (A1 ⊕ B1)α
w
+ (A0 ⊕ B0)

Such a word level XOR operation is widely available in most micro-processors. No
reduction is required, as the size of the polynomial does not exceed m− 1 after
this operation. The carry free addition makes this operation much more efficient to
implement compared to Fp addition.

3.2. Multiplication

The multiplication of two elements A, B ∈ F2m , with A(α) =
∑m−1

i=0 aiα
i and B(α) =∑m−1

i=0 biα
i is given as

C(α) =

m−1∑
i=0

ciα
i
≡ A(α) · B(α) mod F(α) (5)

where the multiplication is a polynomial multiplication, and all αt , with t ≥ m are
reduced with Equation (4).

Figure 2 Representation
of binary field element
in software.



Acta Appl Math

The simplest algorithm for field multiplication is the shift-and-add method [28]
with the reduction step inter-leaved (Algorithm 1).

Algorithm 1... Shift-and-Add Most Significant Bit (MSB) first F2m multiplication

Input ::: A=
∑m−1

i=0 aiα
i , B=

∑m−1
i=0 biα

i where ai , bi ∈ F2.

Output ::: C ≡ A· B mod F(α) =
∑m−1

i=0 ciα
i where ci ∈ F2.

1 : C← 0

2 : for i = m− 1 downto 0 do

3 : C← C + bi · (
∑m−1

i=0 aiα
i )

4 : C← (
∑m−1

i=0 ciα
i ) · α mod F(α)

5 : end for

6 : Return (C)

The shift-and-add method is not particularly suitable for software implementations
as the bitwise shifts (in Step 4, Algorithm 1) are hard to implement across the words
on a processor. A more efficient method for implementing the multiplier in software
is the Comb method [31]. Here the multiplication is implemented efficiently in two
separate steps, first performing the polynomial multiplication to obtain 2n-bit length
polynomial and then reducing it using special reduction polynomials.

Algorithm 2 shows the polynomial multiplication using the Comb method. The op-
eration SHIFT(A<< k) =

∑m−1
i=0 aiα

(i+k), performs a k-bit shift across the words with-
out reduction. Comb method is more efficient in software because SHIFT(A<< w.i)
where w is the word-length of the processor, are the same original set of bytes
referenced with a different memory pointer and therefore requires no actual shifts.

Algorithm 2... Comb method polynomial multiplication on a w-bit processor.

Input ::: A=
∑m−1

i=0 aiα
i , B=

∑m−1
i=0 biα

i where ai , bi ∈ F2 and s = dm
w
e.

Output ::: C = A· B=
∑2m−2

i=0 ciα
i , where ci ∈ F2

1 : C← 0

2 : for j = 0 to w − 1 do

3 : for i = 0 to s − 1 do

4 : C← bwi+ j · SHIFT(A<< w.i)+ C

5 : end for

6 : A← SHIFT(A<< 1)

7 : end for

8 : Return (C)
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3.3. Squaring

Field Squaring is much simpler in F2m when represented in polynomial basis as shown
here:

C ≡ A2 mod F(α)

≡ (am−1α
2(m−1)

+ am−2α
2(m−2)

+ . . .+ a1α
2
+ a0) mod F(α) (6)

Polynomial squaring is implemented by expanding C to double its bit-length by
interleaving 0 bits in between the original bits of C and then reducing the double
length result. The interleaving step is most efficiently implemented in software using
a precomputed table as shown in Algorithm 3. The size of the precomputed table can
be chosen based on the available memory and performance requirements. Normally
a precomputed table of all possible k bit expansion to 2k bits is used, where w is a
multiple of k.

Algorithm 3... Polynomial squaring in software for a w bit processor

Input ::: A=
∑s−1

i=0 Aiα
wi .

Output ::: C = A2
=

∑2s−1
i=0 Ciα

wi .

1 : Pre-compute: For each possible (dk, · · · , d1, d0), compute 2k bit quantity

T(d) = (0, dk, · · · , 0, d1, 0, d0).

2 : for i = 0 downto s − 1 do

3 : Let Ai = (u w
k
, · · · , u1) where each u j are k bits.

4 : C2i ← (T(u w
2k

), · · · , T(u1))

5 : C2i+1 ← (T(u w
k
), · · · , T(u w

k +1))

6 : end for

7 : Return (C)

3.4. Field Reduction

Field reduction of a (2n− 1) bit size polynomial Ć(α) using the Equation (4) can
be viewed as a linear mapping of the 2n− 1 coefficients of Ć(α) into the reduced n
coefficient polynomial C(α) represented as:

c0

c1

...

cn−1

 =


ć0

ć1

...

ćn−1

+


r0,0 · · · r0,n−2

r1,0 · · · r1,n−2

...
. . .

...

rn−1,0 · · · rn−1,n−2




ćn

ćn+1

...

ć2n−2


where ri, j ∈ F2 depends on the reduction polynomial F(x). Hence, the reduction
step consists of simple F2 additions. Therefore, choosing an appropriate reduction
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polynomial F(x), like a trinomial or pentanomial, can reduce the complexity of this
operation i.e.,

F(x) = xm
+ xk
+ 1

or

F(x) = xm
+ x j

+ xk
+ xl
+ 1

Such polynomials are widely recommended in all the major standards [1, 25, 36].
For software implementation, reduction polynomials with the middle terms close to
each other are more suitable. Implementation techniques using different reduction
polynomials can be found in [7]. We present here as an example, the reduction of
C(α) with degree at most 160 in the field F281 with irreducible polynomial F(x) =

x81
+ x4
+ 1 on a 32 bit processor. Consider the sixth word C5 of C(α):

x160
≡ x83

+ x79 mod f (x)

x161
≡ x84

+ x80 mod f (x)

...

x191
≡ x115

+ x111 mod f (x)

By considering columns on the right side of the above congruence, it follows that
reduction of C5 can be performed by adding C5 twice to C, with the rightmost bit of
C5 added to bits 83 and 79 of C. This leads to Algorithm 4 for modular reduction
which can easily be extended to other reduction polynomials and different degrees.

Algorithm 4... Modular reduction, one word at a time

Input ::: A binary polynomial C(α) of degree at most 160.

Output ::: C(α) mod F(α), where F(x) = x81
+ x4
+ 1.

1 : for i = 5 downto 4 do

2 : T← (Ci << 31)⊕ (Ci−1 >> 1)

3 : Ci−3 ← Ci−3 ⊕ (T >> 12)⊕ (T >> 16)

4 : Ci−4 ← Ci−4 ⊕ (T << 20)⊕ (T << 16)

5 : end for

6 : T← (C3 << 31)⊕ ((C2 AND 0xFFFE0000) >> 1)

7 : C0 ← C0 ⊕ (T >> 12)⊕ (T >> 16)

8 : C2 ← C2 AND 0x0001FFFF {Clear unused bits of C2 }

9 : Return (C = (C2, C1, C0))
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3.5. Inversion

In the following, we will discuss practical relevant methods to compute multiplicative
inverses in finite fields in software: The Binary Extended Euclidean Algorithm, the
Almost Inverse Algorithm, Fermat’s little theorem, and look-up tables.

Binary Extended Euclidean Algorithm (BEA). Algorithm 5 shows the binary variant
of the Extended Euclidean Algorithm (EEA, cf. [32, Algorithm 2.221]). The main
difference to the EEA is that the BEA clears bits of u and v from right to left and
uses only divisions by 2 which can be implemented by simple shifts by one.

Algorithm 5... BEA for Inversion in F2m ([24])

Input ::: A∈ F2m, A 6= 0.

Output ::: A−1 mod f (x).

1 : b← 1, c← 0, u← A, v← f.

2 : while x divides u do

3 : u← u/x.

4 : if x divides b then

5 : b← b/x.

6 : else

7 : b← (b+ f )/x.

8 : end if

9 : end while

10 : if u = 1 then

11 : return b

12 : end if

13 : if deg(v) < deg(v) then

14 : u↔ v, b↔ c.

15 : end if

16 : u← u+ v, b← b+ c.

17 : goto step 2

The BEA maintains the invariants ba + df = u and ca + e f = v for some d and e
which are not explicitly computed. The algorithm terminates when deg(u) = 0, in
which case u = 1 and ba + df = 1; hence b = a−1 mod f (x).

Remark. A speed-up of the algorithm can be obtained by avoiding the change of
variables in step 14 by using two different subroutines for each case [41].
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Almost Inverse Algorithm (AIA). Algorithm 6 is a modification of the binary Euclid-
ean algorithm and computes A−1xk mod f as an intermediate result. The inverse A−1

is finally obtained by the reduction of xk (step 6). With a suitable polynomial f (x),
the reduction can be performed efficiently (see, e.g., [19]). For such polynomials, AIA
outperforms BEA since the polynomials b and c grow more slowly in AIA.

Algorithm 6... AIA for Inversion in F2m ([40])

Input ::: A∈ F2m, A 6= 0.

Output ::: A−1 mod f (x).

1 : b← 1, c← 0, u← A, v← f, k← 0.

2 : while x divides u do

3 : u← u/x, c← x · c, k← k+ 1.

4 : end while

5 : if u = 1 then

6 : return b · x−k

7 : end if

8 : if deg(v) < deg(v) then

9 : u↔ v, b↔ c.

10 : end if

11 : u← u+ v, b← b+ c.

12 : goto step 2

Fermat’s Little Theorem. This method has a higher computational complexity than
the Euclidean algorithms but can, nevertheless, be relevant in certain situations, e.g.,
if a fast exponentiation unit is available or if an algorithm with a simple control
structure is desired. From Fermat’s little theorem it follows immediately that for any
element A∈ F2m , A 6= 0, the inverse can be computed as A−1

= A(2m
−2). In this case,

the use of addition chains allows to dramatically reduce the number of multiplications
(though not the number of squarings) required for computing the exponentiation
to the (2m

− 2)th power. One such efficient method is the Itoh–Tsujii Inversion
(cf. Section 5).

Look-up Tables. A conceptually simple method is based on look-up tables. In
this case, the inverses of all field elements are precomputed once with one of the
methods mentioned above, and stored in a table. Assuming the table entries can be
accessed by an appropriate method, e.g., by the field elements themselves in a binary
representation, the inverses are available quickly. The drawback of this method are
the storage requirements, since 2m memory locations are needed for fields F2m . Since
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the storage requirements are too large for the finite fields commonly needed in public-
key cryptography, inversion based on look-up tables is mainly useful in cases of small
finite fields, e.g., F28 , which have applications in block ciphers, e.g. AES, or which are
subfields of larger extension fields.

4. Software Implementation Techniques Over Fp

Arithmetic with odd primes continues to be the most widely used form of finite
field in cryptography. In software, in particular, this might be due to the widespread
existence of integer multipliers in general purpose and embedded processors and to
the lack of support (or inherent inefficiency) for operations typically needed in fields
of characteristic two, such as bitwise operations. In addition, there seems to be a belief
that such fields are inherently stronger (from the cryptographic point of view) than
their counterparts in characteristic two.1 We also notice that, although the methods
described in this section focus on finite field arithmetic and, therefore, assume a prime
modulus, many of these techniques can also be applied to other non-prime moduli
and, in particular, to RSA-type moduli, probably the most widely used type of moduli
in practical applications today. The literature covering the material in this section is
substantial and there are several textbooks covering the methods described here. We
refer the reader for example to [28, 32, 43]. Also see [6] for a comprehensive list of
references and a more mathematical treatment.

We begin this section by briefly describing multi-precision integer arithmetic as
this is the basis of many modulo arithmetic algorithms. Then, we describe naive
methods for modular reduction, specialized algorithms for reduction modulo general
primes (moduli), and finally techniques for moduli of special form.

Notation. We will refer to multi-precision integers with capital letters and to their
digits in radix-b representation with lower-case letters. For example, we would write
an n-digit integer in radix b as X=

∑n−1
i=0 xi bi with b ≥ 2 and 0 ≤ xi < b. For purposes

of multi-precision integer arithmetic, integers can be represented in signed magnitude
representation, i.e., just add an additional bit that indicates whether the integer is
positive or negative or two’s complement representation [32, Section 14.2.1].

4.1. Integer Multi-precision Arithmetic

Addition and Subtraction. Addition and subtraction of multi-precision integers is
performed via the method taught in primary school: Add (subtract) the digits in the
integers and keep track of carries. Addition and subtraction routines are depicted in
Algorithms 7 and 8.

1 For example, the Weil descent [20] attack which renders most binary fields of composite degree
unsuitable for cryptographic applications, does not have yet a counterpart in the prime field case.
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Algorithm 7... Multi-precision Addition

Input ::: X=
∑n−1

i=0 xi bi , Y =
∑n−1

i=0 yi bi

Output ::: Z= X+ Y =
∑n

i=0 zi bi

1 : c← 0

2 : for i = 0 to n− 1do

3 : zi ← xi + yi + c mod b

4 : if xi + yi + c ≥ b then

5 : c← 1

6 : else

7 : c← 0

8 : end if

9 : zn ← c

10 : end for

11 : Return(Z)

Also in Algorithms 7 and 8, the value of the radix b is usually chosen as to be
compatible with the underlying hardware. For example, on a 32-bit architecture, b
would be chosen to be 232. Notice also that certain processors have hardware support
for the operation of adding with carry shown in Step 7 of Algorithm 7.

Algorithm 8... Multi-precision Subtraction

Input ::: X=
∑n−1

i=0 xi bi , Y =
∑n−1

i=0 yi bi , X > Y

Output ::: Z= X− Y =
∑n−1

i=0 zi bi

1 : c← 0

2 : for i = 0 to n− 1 then

3 : zi ← xi − yi + c mod b

4 : if xi − yi + c < 0 then

5 : c←−1

6 : else

7 : c← 0

8 : end if

9 : end for

10 : Return(Z)

Algorithm 8 requires that X > Y which is often not known in advance. In general,
to avoid this requirement, if the value of c equals −1 at the end of the computation,
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one can perform the operation again with swapped operands. Alternatively, the
implementer can choose for two’s complement representation, which inherently
takes care of the sign problem.

School Book Method of Multiplication. A multiplication algorithm can be derived by
observing that for X and Y =

∑n−1
i=0 yi bi , the product X · Y can be written as:

X · Y =
n−1∑
i=0

(X · yi )bi
= b(· · · (b(0+ X · yn−1)+ X · yn−2)+ · · · )+ X · y0 (7)

The multiplication of each term X · yi can be similarly unrolled resulting in Algorithm
9. Algorithm 9 requires in Step 5, a digit multiplication (x j · yi ) and two additions,
the result of which can be proven to fit in two base-b digits. We also point out
that if instead of initializing Z to 0 in Step 1 of Algorithm 9, we initialize it to
A· 2−(n−1), then, the final result will be Z= X · Y+ A. This operation is useful in
certain applications and it is obtained at virtually no extra cost. Finally, notice that
normally the base b is chosen so that the hardware multiplier in the processor can
multiply two base-b digits and generate a double precision result.

Algorithm 9... Multi-precision Multiplication

Input ::: X=
∑m−1

i=0 xi bi , Y =
∑n−1

i=0 yi bi

Output ::: Z= X · Y =
∑m+n−1

i=0 zi bi

1 : Z← 0

2 : for i = 0 to n− 1 do

3 : c← 0

4 : for j = 0 to m− 1 do

5 : (u, v)b← zi+ j + x j · yi + c

6 : zi+ j ← v, c← u

7 : end for

8 : end for

9 : zn+m−1 ← c

10 : Return(Z)

Squaring is a special case of multiplication and it can be shown to require half the
number of single-precision multiplications that regular multiplication requires. The
traditional squaring algorithm presented in [32, Chapter 14] requires an intermediate
value that is three single-precision digits in radix-b representation. To accommodate
for this inconvenience, [21] proposes modifications which only require a double
precision register as in the case of multiplication (see also [10] for a discussion about
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the relative performance of the methods). In general, multiplication should not be
more than twice as fast as squaring thanks to the following identity:

X · Y =
(X+ Y )2

− (X− Y )2

4

Karatsuba Multiplication. The Karatsuba multiplication algorithm was originally
introduced in [27]. In [27], it was credited to Karatsuba alone who was the first
to observe that multiplication of large integers could be done in complexity less
than O(n2). The basic idea is as follows. Given two integers X=

∑n−1
i=0 xi bi and

Y =
∑n−1

i=0 yi bi , define m= n/2 where it is assumed that n is even (if not simply pad
the integer with zeros to the left until n is even). Then, we can write X and Y as:

X =
n−1∑
i=0

xi bi
= XHbm

+ XL

Y =
n−1∑
i=0

yi bi
= YHbm

+ YL

where XL =
∑m−1

i=0 xi bi , XH =
∑n−1

i=m xi bi−m and similarly for Y. Then we can compute
Z= X · Y as

Z= D0 + (D1 − D0 − D2) bm
+ D2b2m

where

D0 = XL · YL

D1 = (XL+ XH) · (YL+ YH)

D2 = XH · YH

Thus one can multiply X times Y with three products of n/2 radix-b integers instead
of four. Two sums and two differences of integers of size n/2 are also needed.
This algorithm if run in a recursive manner has complexity O(nlog2 3) ≈ O(n1.5849).
Reference [6], attributes to [28] the following variant of the Karatsuba algorithm:

Z= D0 + (D0 + D2 − D1) bm
+ D2b2m

with D1 = (XL− XH) · (YL− YH). The Karatsuba algorithm can be easily generalized
to polynomials (simply interpret X and Y as polynomials, the only difference being
that during addition no carries will be generated).

Division. Division can be fully characterized by the basic division equation

X= Q · M+ R, 0 ≤ R < M (8)

where X is the dividend, M is the divisor, Q is the quotient, and R is the residue. Just
like multiplication can be expressed in terms of repeated additions and shifts, division
can be written in terms of subtractions and shifts. However, in practice, division is
not used in the finite field setting as there are more efficient methods to compute the
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remainder (i.e. the modulo operation) or to compute the inverse of an element in
the finite field (through the extended Euclidean algorithm). Thus, we do not describe
division any further in this paper and refer the interested reader to [32, Chapter 14].

4.2. Basic Modular Arithmetic Methods

Addition and Subtraction. Field addition over Fp is performed using multi-precision
integer addition followed by a reduction if required as shown in Algorithm 10.
Similarly subtraction in Fp is a multi-precision integer subtraction followed by an
additional addition with p if the result is negative (Algorithm 11).

Algorithm 10... Addition in Fp

Input ::: A, B ∈ Fp.

Output ::: C ≡ A+ B mod p.

1 : C← A+ B {multi-precision integer addition }

2 : if C ≥ p then

3 : C← C − p

4 : end if

5 : Return(C )

Algorithm 11... Subtraction in Fp

Input ::: A, B ∈ Fp.

Output ::: C ≡ A− B mod p.

1 : C← A− B {multi-precision integer subtraction }

2 : if C < 0 then

3 : C← C + p

4 : end if

5 : Return(C )

School-book Method for Modular Multiplication. Modular multiplication and squar-
ing can be done by first performing a multi-precision integer multiplication or
squaring, respectively, and then reducing the double bit-length result modulo p. The
most naive method to perform modular multiplication is known as the multiply first
and then divide method. In other words, to compute the product Z= X · Y mod p,
one first computes Z′ = X · Y and then computes

Z= Z′ mod p = Z′ − bZ′/pcp. (9)
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Interleaved Multiplication Reduction Method. The details of this method are sketched
in [8, 45]. The method is based on combining (7) with modular reduction and making
use of the distributivity property of modular reduction. Thus, Equation (7) becomes:

X · Y mod p =
n−1∑
i=0

(X · yi )bi mod p

= b(· · · (b(0+ X · yn−1 mod p)+ X · yn−2 mod p)

+ · · · )+ X · y0 mod p (10)

Algorithm 12... Interleaved Multiplication Reduction Method

Input ::: X, M, Y =
∑n−1

i=0 yi 2i with X, Y < p

Output ::: Z= X · Y mod p

1 : Z← 0

2 : for i = 0 to n− 1 do

3 : Z← b · Z+ X · yn−1−i

4 : Z← Z mod b

5 : end for

6 : Return(Z)

Algorithm 12 follows easily from (10). We notice that restricting X, Y < p does not
have any practical impact as in most cryptographic applications it is a requirement.
For the case b = 2, since Z, X, Y < p at the beginning of every loop iteration i , the Z
in Step 3 of Algorithm 12 is

Z(i)
= 2 · Z(i−1)

+ X · yn−1−i ≤ 2(M− 1)+ (M− 1) ≤ 3M− 3

Thus, in Step 4 we need to subtract p at most twice from Z to obtain Z mod p.
The case where b > 2, is somewhat more complicated in that it would require more
than two subtractions to obtain the result modulo p. Thus, alternative methods are
required to perform the modular reduction. This is the subject of the next section.

4.3. General Moduli Algorithms

Barret Modular Reduction. Barret reduction was originally introduced in [4], in the
context of implementing RSA on a DSP processor. Algorithm 13 summarizes
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Algorithm 13... Barret Modular Reduction

Input ::: X=
∑2n−1

i=0 xi bi , p =
∑n−1

i=0 pi bi , with pn−1 6= 0, µ = bb2n/pc, b > 3

Output ::: R= X mod p

1 : Q1 ← bX/bn−1
c

2 : Q2 ← Q1 · µ

3 : Q3 ← bQ2/bn+1
c

4 : R1 ← X mod bn+1

5 : R2 ← Q3 · p mod bn+1

6 : R← R1 − R2

7 : if R < 0 then

8 : R← R+ bn+1

9 : end if

10 : while R≥ p do

11 : R← R− p

12 : end while

13 : Return(R)

Barret’s modular reduction. To clarify Algorithm 11, consider re-writing X as X=
Q · p+ R with 0 ≤ R < p, which is a well known identity from the division algorithm
[32, Definition 2.82]. Thus

R= X mod p = X− Q · p (11)

Barret’s basic idea is that one can write Q in (11) as:

Q= bX/pc =
⌊(

X/bn−1
) (

b2n/p
) (

1/bn+1
)⌋

(12)

and in particular Q can be approximated by

Q̂= Q3 =
⌊⌊(

X/bn−1
)⌋ (

b2n/p
) (

1/bn+1
)⌋

We notice that Q3 can be at most 2 smaller than Q [32, Fact 14.43] and that the
quantity µ = b2n/p can be precomputed when performing many modular reductions
with the same modulus, as is the case in cryptographic algorithms. Finally, Step 11 in
Algorithm 13 is repeated at most twice [4].

From the efficiency point of view, notice that all divisions by a power of b are
simply performed by right-shifts and modular reduction modulo bi , is equivalent
to truncation. The complexity of Algorithm 13 is basically given by the number of
multiplications. We notice that there are only two multi-precision multiplications:
One to compute Q2 (Step 2) and one to compute R2 (Step 5). Both are “partial”
multiplications, i.e., we don’t need to compute all digits of the result. In the case of
Q2 the n− 1 least significant digits need not to be computed and in the case of R2

only the n+ 1 significant digits are needed. It can be shown that Algorithm 13 needs
at most (n2

+5n+2)

2 +
(

n+1
2

)
+ n = n2

+ 4n+ 1 single-precision multiplications (where
single-precision multiplication means multiplication of two digits) [32, Note 14.45].
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Barret’s algorithm can be further improved as shown in [13, 14]. The basic idea is to
re-write the quotient in (12) as:

Q= bX/pc =

⌊ X
2n+β

2n+α

p

2α−β

⌋
where Barret’s algorithm in radix b = 2 corresponds to the case α = n and β = −1.
Then, the quotient can be estimated as

Q̂=

⌊ X
2n+β

⌋ ⌊
2n+α

p

⌋
2α−β


Then, for a given modulus p, µ = 2n+α

p can be precomputed. It is shown in [14], that⌊
X
p

⌋
− 2γ−α

− 2β+1
− 1+ 2β−α < Q̂≤

⌊
X
p

⌋
(13)

for some γ > 0. Equation (13) implies that the estimated quotient Q̂ is always smaller
or equal to the real quotient and that one needs to choose α, β, and γ to minimize
the error of the estimate Q̂. In particular, [14] shows that to minimize the error one
must choose β ≤ −2 and α > γ . Following [14], the error is at most 1, thus improving
over Barret’s algorithm (Algorithm 13) where Q̂ could be at most 2.

Quisquater’s Modular Reduction. Quisquater’s algorithm, originally introduced in
[38, 39], can be thought of as an improved version of Barret’s reduction algorithm.
References [5, 47] have proposed similar methods. In addition, the method is used in
the Phillips smart-card chips P83C852 and P83C855, which use the CORSAIR crypto-
coprocessor [12, 35] and the P83C858 chip, which uses the FAME crypto-coprocessor
[18]. Quisquater’s algorithm, as presented in [12], is a combination of the interleaved
multiplication reduction method (Algorithm 12) and a method that makes easier and
more accurate the estimation of the quotient Q in (11). Step 4 of Algorithm 12 can
then be performed following (11). In particular, assume that we want to compute
R= X mod p = X− Q · p, then the quotient Q can be written as:

Q=
⌊

X
p

⌋
=

⌊
X

2n+c
·

2n+c

p

⌋
From the above, we can write

Q̂δ =

(⌊
X

2n+c

⌋)
·

(⌊
2n+c

p

⌋)
(14)

where Q̂ is an approximation of the quotient Q. Thus, (14) allows us to write an
approximation for R= X mod p as

R̂= X− Q̂ · p′ = X−
⌊

X
2n+c

⌋
· p′

where we effectively are performing a reduction modulo p′ = δp = b2n+c/pcp. We
notice that p′ has its most significant c bits equal to 1 and that the computation of
the approximate quotient Q̂ is immediate, i.e., it is just the most significant bits of X.
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Since the objective of the modular reduction is to obtain R= X mod p, we need a
way to obtain R from R̂ which is known in the literature as de-normalization.2

Since we have reduced modulo p′ = δp, a multiple of p, we have that R= X mod
p = R̂ mod p = (X mod p′) mod p. Notice that we can write δ R̂ mod p′ as:

δ R̂ mod p′ =
[
δ

(
X−

⌊
X
p′

⌋
p′

)]
mod p′ = δX−

⌊
δX
p′

⌋
p′ = δX−

⌊
X
p

⌋
(δp) (15)

Thus, from (15), we obtain the following relation to obtain R from R̂:

R=

(
δ · R̂

)
mod p′

δ

The only step that is left is to compute δ = b2n+c/pc. It is shown in [15] that one can
approximate δ within 1. Further, details about the algorithm and the choice of δ can
be found in [14].

Montgomery Modular Reduction. The Montgomery algorithm, originally introduced
in [33], is a technique that allows efficient implementation of the modular multiplica-
tion without explicitly carrying out the modular reduction step. The Montgomery
reduction algorithm is shown in Algorithm 14. The idea behind Montgomery’s
algorithm is to transform the integers in M-residues3 and compute the multiplication
with these M-residues. At the end, one transforms back to the normal representation.
As with Quisquater’s method, this approach is only beneficial if we compute a series
of multiplications in the transform domain (for example, in the case of modular
exponentiation). Notice that Algorithm 14 is just the reduction step involved in a
modular multiplication. The multiplication step can be accomplished, for example,
with Algorithm 9. To see that Z in Step 2 is an integer, observe that Q= T · p′ + k · R
and p · p′ = −1+ l · R, for some integers k and l. Then, (T + Q · p)/R= (T + (T ·
p′ + k · R)p)/R= l · T + k · p.

In practice R in Algorithm 14 is a multiple of the word size of the processor
and a power of two. This means that p, the modulus, has to be odd (because of
the restriction gcd(p, R) = 1) but this does not represent a problem as p is a prime
or the product of two primes (RSA) in most practical cryptographic applications.
In addition, choosing R a power of 2 simplifies Steps 1 and 2 in Algorithm 14, as
they become simply truncation (modular reduction by R in Step 1) and right shifting
(division by R in Step 2). Notice that p′ ≡ −p−1 mod R. In [17] it is shown that if
p =

∑n−1
i=0 pi bi , for some radix b typically a power of two, and R= bn, then p′ in Step

1 of Algorithm 14 can be substituted by p′0 = −p−1 mod b. The authors of [17] notice
that although the resulting sum T + A· p (in Step 2 of Algorithm 14) might not be
the same, the effect is, namely making T + A· p a multiple of R.

2 Notice that Quisquater’s algorithm is intended for cases in which many modular reductions have
to be performed such as in the case of an RSA exponentiation, thus the de-normalization is only
performed at the end of the exponentiation.
3 The M-residue of X is defined to be X · R mod M, where R > M and gcd(R, M) = 1, as in the
Montgomery reduction algorithm.
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As with previous algorithms, one can interleave multiplication and reduction steps.
The result is Algorithm 15 where the trick from [17] is also used.

Algorithm 14... Montgomery Reduction

Input ::: 0 ≤ T < R · p, R > p, gcd(p, M) = 1, and R · R−1
− p · p′ = 1

Output ::: Z= T · R−1 mod p

1 : Q← (T mod R) p′ mod R

2 : Z← T+Q·p
R

3 : if Z≥ p then

4 : Z← Z− p

5 : end if

6 : Return(Z)

Montgomery’s multiplication algorithm has received a lot of attention since its
introduction in 1985. These has lead to multiple variants depending on the granularity
with which each operand is processed. We refer to [29] for an excellent treatment of
several variants and a thorough comparison of each method’s complexity.

Other Modular Reduction Algorithms. We have explicitly left out two other proposed
methods for modular reduction because they are aimed at improving the efficiency of
the modular reduction operation in hardware. These methods are the Sedlak’s mod-
ular reduction algorithm [44], used by Infineon (previously Siemens Semiconductors)
in the SLE44C200 and SLE44CR80S micro-processors and their derivatives [35] and
Brickell’s method, originally introduced in [9], which is dependent on the utilization
of carry-delayed adders.

Algorithm 15... Montgomery Multiplication

Input ::: X=
∑n−1

i=0 xi bi , Y =
∑n−1

i=0 yi bi , p =
∑n−1

i=0 pi bi , with 0 ≤ X, Y < p, b > 1,

p′ = −p−1
0 mod b, R= bn, gcd(b, p) = 1

Output ::: Z= X · Y · R−1 mod p

1 : Z← 0 {where Z=
∑n

i=0 zi bi
}

2 : for i = 0 to n− 1 do

3 : q← (z0 + xi · y0) p′ mod b

4 : Z← (Z+ xi · Y+ q · p) /b

5 : end for

6 : if Z≥ p then

7 : Z← Z− p

8 : end if

9 : Return(Z)



Acta Appl Math

Table 2 Special prime families [46]

Family name Prime form Comments

Mersenne primes 2k
− 1 k must be prime

Crandall numbers 2dk
− 3 –

Generalized Mersenne primes 2dk
− 2ck

− 1 where 0 < 2c ≤ d and
gcd(c, d) = 1 or 3d < 6c < 4d
and gcd(c, d) = 1

2dk
− 2(d−1)k

+ 2(d−2)k
−

· · · − 2k
+ 1

for d even and k 6= 2 mod 4

2dk
− 2ck

+ 1 0 < 2c < d and gcd(c, d) = 1

24k
− 23k

+ 22k
+ 1 –

4.4. Field Reduction for Special Primes and Other Tricks

Field reduction can be performed very efficiently if the modulus p is of special form.
An example of such primes are the Crandall’s primes [11] of the form 2n

− c, for c
positive and small enough to fit into one processor word. In [46], a different family of
primes is introduced which accepts efficient reduction. These primes have received
the name of Generalized Mersenne (GM) primes. The family of primes described in
[46] (including those introduced in [11]) are shown in Table 2. These primes have
been adopted for use in different standards such as NIST [36], ANSI [1] and SEC
[42]. Table 3 summarizes the primes included in [36, 42] Fast reduction is possible
using these primes since the powers of 2 translate naturally to bit locations in the
underlying hardware. For example 2160

≡ 231
+ 1 mod p160 and therefore each of the

higher bits can be wrapped to the lower bit locations based on the equivalence. The
steps required to compute the fast reduction using GM primes are given in NIST [36].
Two other techniques are worth mentioning. Solinas [46] notices that in some cases
it might be advantageous to perform the modular reduction modulo a slightly larger

Table 3 Standardized primes
[36, 42] Prime name Prime Source

p112 (2128
− 3)/76, 439 [42]

p128 2128
− 297

− 1 [42]

p160 2160
− 231

− 1 [42]

p192 2192
− 264

− 1 [36, 42]

p224 2224
− 296

+ 1 [36, 42]

p256 2256
− 2224

+ 2192
+ 296

− 1 [36]

p384 2384
− 2128

− 296
+ 232

− 1 [36]

p521 2521
− 1 [36]
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prime than the modulus, such that the larger prime is a GM prime. This is the case
of for example p112 in Table 3. Finally in applications where the integers do not fit
exactly in k words and require a few bits of an extra word for their representation, the
techniques of [50] can be useful. Notice that similar techniques were applied in [49]
to an implementation of optimal extension fields in an 8051-based microcontroller,
with substantial performance gains.

5. Inversion

Similar to the case of fields F2m , the multiplicative inverse in Fp can be computed
by variants of the EEA and Fermat’s little theorem. The binary Extended Euclidian
Algorithm (BEA, cf. Section 3) is the most general and in many cases most efficient
method. When using the Montgomery residue system, the Montgomery Inverse
Algorithm is preferable.

Binary Euclidean Algorithm (BEA). Let u be the element whose inverse is to be
computed and v the modulus. Note that u and v must be relatively prime in order for
the inverse to exist. The EEA computes coefficients s and t such that

us + vt = gcd(u, v) = 1.

The parameter s is the inverse of u modulo v. In contrast to the Euclidean algorithm
for Fp (cf. [32, Algorithm 2.107]), the BEA does not require integer divisions but only
simple operations such as shifts and additions as shown in Algorithm 16. This usually
leads to a faster execution on digital computers.

Montgomery Inverse. The Montgomery inverse computes the modular inverse in the
Montgomery domain, i.e.,

MontInv(A) = A−12n(mod p), where n = dlog2 pe.

The corresponding algorithm is given in Algorithm 17.

Almost Inverse. The Almost Inverse results from an intermediate step (Step 13,
Algorithm 17) of the computation of the Montgomery Inverse, i.e.,

AlmMontInv(A) = A−12k(mod p).

where 2 ≤ k≤ 2n. Then, modular inverse A−1 can be obtained from the almost
inverse by dividing out 2k, an efficient method for which is a repeated division by
2w and a final division by 2k−wbk/wc, where w is the wordsize of the processor.
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Algorithm 16... BEA for Inversion in Fp

Input ::: Prime p and A∈ Fp.

Output ::: A−1 (mod p).

1 : u← x, v← p, b← 1, c← 0.

2 : while u 6= 1 and v 6= 1 do

3 : while u is even do

4 : u← u/2.

5 : if b is even then

6 : b← b/2.

7 : else

8 : b← (b+ p)/2.

9 : end if

10 : end while

11 : while v is even do

12 : v← v/2.

13 : if c is even then

14 : c← c/2.

15 : else

16 : c← (c + p)/2.

17 : end if

18 : end while

19 : if u ≥ v then

20 : u← u− v, b← b− c.

21 : else

22 : v← v − u, c← c − b.

23 : end if

24 : end while

25 : if u = 1 then

26 : return b (mod p).

27 : else

28 : return c (mod p).

29 : end if
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Algorithm 17... Montgomery Inversion in Fp

Input ::: A∈ Fp.

Output ::: r ∈ Fp and k, where r ≡ A−12n (mod p) and n ≤ k≤ 2n.

1 : u← p, v← A, r ← 0, s ← 1, and k← 0.

2 : while v > 0 do

3 : if u is even then

4 : u← u/2, s ← 2s

5 : else if u > v then

6 : u← (u− v)/2, r ← r + s, s ← 2s

7 : else if v ≥ u then

8 : u← (v − u)/2, s ← r + s, r ← 2r

9 : end if

10 : k← k+ 1

11 : end while

12 : if r ≥ p then

13 : r ← r − p (Almost Inverse)

14 : end if

15 : for i = 1 to k− n do

16 : if r is even then

17 : r ← r/2

18 : else

19 : r ← (r + p)/2

20 : end if

21 : end for

22 : return r (Montgomery Inverse)

6. Software Implementation Techniques Over Fpm

For elliptic curve cryptosystems, only prime extension fields are of interest due to the
Weil descent attack for composite fields. An Optimal Extension Field, which is a spe-
cial version of extension fields, has properties that allow an efficient implementation
in software.

DEFINITION 1. An Optimal Extension Field is a extension field Fpm such that

1. The prime p is a pseudo-Mersenne (PM) prime of the form p = 2n
± c with

log2(c) ≤ bn/2c.
2. An irreducible binomial P(x) = xm

− ω exists over Fp.
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We represent the elements of Fpm as polynomials of degree at most m− 1 with
coefficients from the subfield Fp, i.e. any element A∈ Fpm can be written as

A(t) =
m−1∑
i=0

ai · t i
= am−1 · tm−1

+ · · · + a2 · t2
+ a1 · t + a0 with ai ∈ Fp (16)

where t is the root of P(x) (i.e. P(t) = 0). The prime p is generally selected to
be a pseudo-Mersenne prime that fits into a single processor word. Consequently,
we can store the m coefficients of A∈ Fpm in an array of m single-precision words,
represented as the vector (am−1, . . . , a2, a1, a0).

The construction of an OEF requires a binomial P(x) = xm
− ω which is ir-

reducible over Fp. Reference [3] describes a method for finding such irreducible
binomials. The specific selection of p, m, and P(x) leads to a fast subfield and
extension field reduction, respectively.

Addition and Subtraction. Addition and subtraction of two field elements A, B ∈ Fpm

is accomplished in a straightforward way by addition/subtraction of the correspond-
ing coefficients in Fp.

C(t) = A(t)± B(t) =
m−1∑
i=0

ci · t i with ci ≡ ai ± bi mod p (17)

A reduction modulo p (i.e. an addition or subtraction of p) is necessary whenever the
sum or difference of two coefficients ai and bi is outside the range of [ 0, p− 1] (shown
in Algorithms 10 and 11). There are no carries propagating between the coefficients
which is an advantage for software implementations.

Multiplication and Squaring. A multiplication in the extension field Fpm can be
performed by ordinary polynomial multiplication over Fp and a reduction of the
product polynomial modulo the irreducible polynomial P(t). The product of two
polynomials of degree at most m− 1 is a polynomial of degree at most 2m− 2.

C(t) = A(t) · B(t) =
( m−1∑

i=0

ai · t i
)
·

( m−1∑
j=0

b j · t j
)

≡

m−1∑
i=0

m−1∑
j=0

(ai · b j mod p) · t (i+ j)
=

2m−2∑
k=0

ck · tk (18)

There are several techniques to accomplish a polynomial multiplication. The stan-
dard algorithm moves through the coefficients b j of B(t), starting with b0, and multi-
plies b j by any coefficient ai of A(t). This method, which is also referred to as operand
scanning technique, requires exactly m2 multiplications of coefficients ai , b j ∈ Fp.
However, there are two advanced multiplication techniques which typically perform
better than the standard algorithm. The product scanning technique reduces the
number of memory accesses (in particular store operations), whereas Karatsuba’s
algorithm [27] requires fewer coefficient multiplications [3, 48].

The product scanning technique employs a ‘multiply-and-accumulate’ strategy [23]
and forms the product C(t) = A(t) · B(t) by computing each coefficient ck of C(t)
at a time. Therefore, the coefficient-products ai · b j are processed in a ‘column-by-
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Figure 3 Multiply-
and-accumulate strategy
(m = 4).

over F a
p (t). pro

m 1 is a of at

´

a0 · b0a1 · b0a2 · b0a3 · b0

a0 · b1a1 · b1a2 · b1

a3 · b1

a0 · b2a1 · b2

a2 · b2

a3 · b2

a0 · b3

a1 · b3

a2 · b3

a3 · b3

c0c1c2c3c4c5c6

column’ fashion, as depicted in Figure 3 (for m= 4), instead of the ‘row-by-row’
approach used by the operand scanning technique. More formally, the product C(t)
and its coefficients ck are computed as follows.

C(t)=A(t) · B(t) =
2m−2∑
k=0

ck · tk with ck ≡
∑

i+ j =k

ai · b j mod p (0 ≤ i, j ≤ m− 1)

(19)

The product scanning technique requires exactly the same number of coefficient
multiplications as its operand scanning counterpart (namely m2), but minimizes the
number of store operations since a coefficient ck is only written to memory after it has
been completely evaluated. In general, the calculation of coefficient-products ai · b j

and the reduction of these modulo p can be carried out in any order. However, it
is usually advantageous to compute an entire column sum first and perform a single
reduction thereafter, instead of reducing each coefficient-product ai · b j modulo p.
The former approach results in m2 reduction operations, whereas the latter requires
only one reduction per coefficient ck, which is 2m− 1 reductions altogether.

When A(t) = B(t), the coefficient-products of the form ai · b j appear once for
i = j and twice for i 6= j . Therefore squaring of a polynomial A(t) of degree m− 1
can be obtained with only m · (m+ 1)/2 coefficient multiplications

Subfield Reduction. An integral part of both polynomial multiplication and polyno-
mial squaring is the subfield reduction which is the reduction of a coefficient-product
(or a sum of several coefficient-products) modulo the prime p. Pseudo-Mersenne
primes are a family of numbers highly suited for modular reduction due to their
special form [11]. They allow to employ very fast reduction techniques that are not
applicable to general primes. The efficiency of the reduction operation modulo a PM
prime p = 2n

− c is based on the relation

2n
≡ c mod p ( for p = 2n

− c ) (20)

which means that any occurrence of 2n in an integer z≥ 2n can be substituted by
the much smaller offset c. To give an example, let us assume that z is the product of
two integers a, b < p, and thus z < p2. Furthermore, let us write the 2n-bit product
z as zH · 2n

+ zL, whereby zH and zL represent the n most and least significant bits
of z, respectively. The basic reduction step is accomplished by multiplying zH and c
together and ‘folding’ the product zH · c into zL.

z = zH · 2
n
+ zL ≡ zH · c + zL mod p ( since 2n

≡ c mod p ) (21)

This leads to a new expression for the residue class with a bit-length of at most
1.5n bits. Repeating the substitution a few times and performing final subtraction of



Acta Appl Math

p yields the fully reduced result x mod p. A formal description of the reduction
modulo p = 2n

− c is given in Algorithm 18.

Algorithm 18... Fast reduction modulo a pseudo-Mersenne prime p = 2 n
− c with

log2(c) ≤ n/2

Input ::: n-bit modulus p = 2n
− c with log2(c) ≤ n/2, operand y ≥ p.

Output ::: Residue z≡ y mod p.

1 : z← y

2 : while z≥ 2n do

3 : zL← z mod 2n
{ the n least significant bits of z are assigned to zL }

4 : zH ← bz/2n
c { z is shifted n bits to the right and assigned to zH }

5 : z← zH · c + zL

6 : end while

7 : if z≥ p then z← z− p end if

8 : return z

Finding the integers zL and zH is especially easy when n equals the word-size of
the target processor. In this case, no bit-level shifts are needed to align zH for the
multiplication by c.

Extension Field Reduction. Polynomial multiplication and squaring yields a polyno-
mial C(t) of degree 2m− 2 with coefficients ck ∈ Fp after subfield reduction. This
polynomial must be reduced modulo the irreducible polynomial P(t) = tm

− ω in
order to obtain the final polynomial of degree m− 1. The extension field reduction
can be accomplished in linear time since P(t) is a monic irreducible binomial. Given
P(t) = tm

− ω, the following congruences hold: tm
≡ ω mod x(t). We can therefore

reduce C(t) by simply replacing all terms of the form ck · tk, k≥ m, by ck · ω · tk−m,
which leads to the following equation for the residue:

R(t) ≡ C(t) mod P(t)

≡

m−1∑
l=0

rl · t l with rm−1 = cm−1 (22)

and rl ≡ (cl+m · ω + cl) mod p for 0 ≤ l ≤ m− 2

The entire reduction of C(t) modulo the binomial P(t) = tm
− ω costs at most m− 1

multiplications of coefficients ck by ω and the same number of subfield reductions [2].
In summary, the straightforward way of multiplying two elements in OEF requires

m2
+m− 1 coefficient multiplications and 3m− 2 reductions modulo p. Special

optimizations, such as Karatsuba’s method or the ‘interleaving’ of polynomial mul-
tiplication and extension field reduction, allow to minimize the number of subfield
operations (see [23] for details).
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6.1. Inversion

In the case of extension fields GF(qm), m≥ 2, inversion in the field GF(qm) can be
reduced to inversion in the field GF(q). This reduction comes at the cost of extra
operations (multiplications and additions) in the field GF(qm). If the inversion in
the subfield GF(q) is sufficiently inexpensive computationally compared to extension
field inversion, the method described in Itoh–Tsujii Inversion can have a low over-all
complexity. The method was introduced for fields in normal basis representation in
[26] and generalized to fields in polynomial basis representation in [22]. The method
can be applied iteratively in fields with multiple field extensions, sometimes referred
to as tower fields. In the case of fields GF(2m), m a prime, the Itoh–Tsujii algorithm
degenerates into inversion based on Fermat’s little theorem (cf. Section 3). It should
be stressed that this method is not a complete inversion algorithm since it is still
necessary to eventually perform an inversion in the subfield. However, inversion
in a (small) subfield can often be done fast with one of the methods described
above. Inversion in an OEF can be accomplished either with the extended Euclidean
algorithm or via a modification of the Itoh–Tsujii Algorithm (ITA) [26], which reduces
the problem of extension field inversion to subfield inversion [2].

Another method is direct inversion which is applicable to extension fields GF(qm),
and mainly relevant for fields where m is small, e.g., m= 2, 3, 4.

Itoh–Tsujii Inversion. The ITA computes the inverse of an element A∈ Fpm as

A−1(t) ≡ (Ar (t))−1
· Ar−1(t) mod P(t)

where r =
pm−1

p− 1
= pm−1

+ · · · + p2
+ p+ 1.

Efficient calculation of Ar−1(t) is performed by using an addition-chain constructed
from the p-adic representation of r − 1 = (111 . . . 110)p. This approach requires the
field elements to be raised to the pi th powers, which can be done with help of the ith
iterate of the Frobenius map [3].

The other operation is the inversion of Ar (t) = Ar−1(t) · A(t). Computing the
inverse of Ar (t) is easy due to the fact that for any element α ∈ Fpm , the r th power of
α, i.e. α(pm

−1)/(p−1) is always an element of the subfield Fp. Thus, the computation of
(Ar (t))−1 requires just an inversion in Fp which can be done using a single-precision
variant of the extended Euclidean algorithm.

In summary, the efficiency of the ITA in an OEF relies mainly on the efficiency of
the extension field multiplication and the subfield inversion (see [3, 23]).

Direct Inversion. Similar to Itoh–Tsujii inversion, direct inversion also reduces exten-
sion field inversion to subfield inversion.

As an example, we demonstrate the method for fields GF(q2), introduced in
[34]. Let us consider a non-zero element A= a0 + a1x from GF(qm), where a0, a1 ∈

GF(q). Let us assume the irreducible field polynomial has the form P(x) = x2
+ x +

p0, where p0 ∈ GF(q). If the inverse is denoted as B= A−1
= b0 + b1x, the equation

A· B= [a0b0 + p0a1b1] + [a0b1 + a1b0 + a1b1]x = 1
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must be satisfied, which is equivalent to a set of two linear equations in b0, b1 over
GF(q) with the solution:

b0 = (a0 + a1)/1

b1 = a1/1

 , where 1 = a0(a0 + a1)+ p0a2
1 .

The advantage of this algorithm is that all operations are performed in GF(q). Note
that there is one inversion in the subfield GF(q) of the parameter 1 required. The
algorithm can be applied recursively. The relationship between direction inversion
and the Itoh–Tsujii method is sketched in [37].

7. Summary

We presented here different finite field arithmetic algorithms that are suitable
for software implementation of cryptographic algorithms. The performance of the
various algorithms depends vastly on the underlying micro-processor architecture
on which it is implemented. Therefore a careful choice of the appropriate set of
algorithms have to made for an implementation depending on the performance
requirements and available resources.
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