
A configuration concept for a massively

parallel FPGA architecture

Sandeep Kumar1, Christof Paar1, Jan Pelzl1, Gerd Pfeiffer2, Manfred Schimmler2

1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany

{kumar,cpaar,pelzl}@crypto.rub.de

2 Institute of Computer Science and Applied Mathematics, Faculty of Engineering,

Christian-Albrechts-University of Kiel, Germany

{gp,masch}@informatik.uni-kiel.de

Abstract – Today’s computer hardware

are highly optimized general purpose archi-

tectures but unavoidable inefficient in terms

of special purpose scenarios. The grade of

efficiency usually has to face a business

economical consideration to choose between

special versus general purpose hardware.

The emerging technology of programmable

logic devices enables a new kind of ar-

chitecture for massively parallel systems

based on programmable logic devices. For

such systems the traditional way of chip

configuration is not useful anymore. This

paper presents a concept for configuring

massively parallel reconfigurable architec-

tures. Furthermore a proof of concept is

given by applying the configuration scheme

to an reconfigurable architecture consisting

of 120 chips.

Keywords: parallel hardware, cost-

optimized architecture, FPGA configuration

1 Introduction

While in most cases standard hardware
comes into operation, there always have
been few but important problems demand-

ing application specific hardware. The lat-
ter may be applied in the domain of Printed
Circuit Boards (PCB) or in the chip domain
as Application Specific Integrated Circuit
(ASIC) or both of them. Since a couple
of years, there is a new additional alterna-
tive: the Field Programmable Gate Array
(FPGA) which is a reconfigurable logic de-
vice that has become standard hardware on
the one hand. On the other hand the archi-
tectural freedom is saved. Hence FPGAs
are well suited as building block for special
purpose hardware in the field of compute
intensive applications. In analogy to stan-
dard computer clusters parallel algorithms
preferably run on parallel architectures.

The idea to use massively parallel FPGA
architectures for solving compute intensive
applications requires a technology support-
ing an unrestricted number of reconfigura-
tion cycles, because every implemented ap-
plication leads to a unique configuration.
High density SRAM based architectures are
supporting this feature. Also they are a
proper choice in terms of computational
performance. Such SRAM based FPGAs
are without configuration after power on.
Due to this fact a massively parallel sys-
tem composed of this kind of chips has to



be configured after power on every time.
For single and medium scale FPGA archi-
tectures the configuration may be taken for
granted. Massively parallel FPGA archi-
tectures are characterized by a high device
count demanding an appropriate configura-
tion concept. Section 2 addresses the extent
of the problem while section 3 addresses a
brief introduction to a recent massively par-
allel FPGA architecture where the configu-
ration concept was implemented. A conclu-
sion in section 4 outlines the general prob-
lem and the here presented solution for con-
figuring massively parallel FPGA architec-
tures.

2 The problem

One option for configuring a large number
of FPGAs is connecting all devices to a
JTAG 1 boundary scan chain. Due to bit-
serial communication the time of configura-
tion is unnecessarily high, particularly with
regard to supported 8-bit parallel configura-
tion interfaces for all common FPGA types.
For this reason JTAG is not considered fur-
thermore, although it potentially is a feasi-
ble configuration technology in many cases.

As design guideline a massively parallel
FPGA architecture should support the fol-
lowing features in order to be well manage-
able:

• broadcast of a single configuration to
all devices in parallel

• selection of particular devices for con-
figuration

• use fastest configuration interface to
full capacity

• minimize any additional resources
which is used for configuration only like
nets, routing and components

1JTAG: Joint Test Action Group

All of this requirements are hard to meet
because they are partly mutually exclusive.
Hence a trade-off has to be found as carried
out in the following subsections.

2.1 Addressing

Meeting the requirement for enabling par-
ticular as well as broadcast configuration,
demands a powerful address logic. Since
inevitable every parallel architecture comes
with a communication scheme, it is obvious
to use the present address logic for config-
uration too. So the lower data bus and the
chip select net become dual use signals.

2.2 No Feedback

The standard process of configuration uses
two types of feedback information repre-
sented by two output signals on FPGA site:

• BUSY indicates a stall in order to en-
able flow-control

• DONE indicates a successfully config-
ured FPGA

Supporting this signals on a massively par-
allel architecture requires additional dis-
crete components for driving the signals as
well as additional nets which have to be
routed - all used for the time of configura-
tion only. By simple software workarounds
the two feedback signals are made re-
dundant at nearly maximum configuration
speed. The successful configuration can
be checked by the bus controller as ex-
plained in subsection 2.3. By this mech-
anism a iterative learning sequence of con-
figurations at different speeds is able to find
the nearly maximum configuration speed
without stalls. Although this calibration
process is time intensive, ideally it needs
to be done once per life time of a system.



2.3 Configuration Check

A configuration concept without use of
feedback signals demands an automatic
configuration check by a central controller
instance which might be the master bus
controller. As the custom implementation
at FPGA site must have a client bus con-
troller in order to enable communication at
all, the validating instance can utilize this.
A simple test pattern broadcasted to every
FPGA can be read out afterwards from one
FPGA after another. This validation mech-
anism with time complexity O(n) is a con-
siderable alternative to the hardware sup-
port of feedback signals.

3 COPACOBANA

This section presents in brief the design
and realization of the COPACOBANA ma-
chine [1], which is optimized for running
crypt analytical algorithms. This acronym
stands for Cost-Optimized Parallel Code

Breaker because the primary design goal
was to produce a re-programmable low-cost
design which can be realized for less than
10,000 $ 2 which is applicable for attack-
ing the Data Encryption Standard (DES)
in less than nine days. The realized archi-
tecture outperforms conventional comput-
ers by several orders of magnitude. Fully
configured, COPACOBANA hosts 120 low-
cost FPGAs 3. In this configuration, the
COPACOBANA hardware is able to per-
form an exhaustive key search of DES at
a rate of more than 235 keys per second,
yielding an average search time of less than
nine days. For this, the high-speed DES en-
gine design of the Université Catholique de
Louvain’s Crypto Group was used.

2The currency is US dollar. The total cost is
composed of the material and production costs of
its components. Note that the NRE design costs
for the layout and for programming the FPGAs
are not included.

3Xilinx XC3S1000-5FT256C

3.1 Architecture

data
address

module 1

module 2

module 20

bus

64

16

PCHost
F

P
G

A
F

P
G

A

F
P

G
A

USB 

F
P

G
A

F
P

G
A

F
P

G
A

F
P

G
A

F
P

G
A

F
P

G
A

F
P

G
A

backplane

F
P

G
A

F
P

G
A

F
P

G
A

controller card

F
P

G
A

F
P

G
A

F
P

G
A

FPGA

F
P

G
A

Controller

F
P

G
A

Figure 1: Architecture of COPACOBANA

The design of COPACOBANA is de-
picted in Figure 1. In terms of cost-
optimization a lean hardware was built in
order to support minimum requirements
like power supply, FPGA configuration und
intercommunication. COPACOBANA con-
sists of

• FPGA modules for the actual imple-
mentation of the application,

• a backplane, connecting all FPGA
modules to a common data bus, ad-
dress bus, and power supply,

• and a controller card, as bus controller
and connection to a host-PC via USB.



The backplane hosts 20 FPGA-modules
at 6 devices each and a controller card. All
modules are connected by a 64-bit data bus
and a 16-bit address bus. This single mas-
ter bus is easy to control because no ar-
biter is required. Interrupt handling is to-
tally avoided in order to keep the design as
simple as possible. If the communication
scheduling of an application is unknown in
advance, the bus master will need to poll
the FPGAs.

3.2 Configuration

The configuartion concept of COPA-
COBANA is depicted in figure 2 showing
signals and components which are respon-
sible for configuration. The bottom part
represents a slot related cutout of the bus
while the upper part depicts the beginning
of an FPGA-module showing one of six FP-
GAs. This existing hardware is mentioned
here as proof of concept because ist was de-
signed in accordance with the above pre-
sented configuration concept for massively
parallel FPGA architectures.

The right site of the FPGA shows the un-
connected feedback signals INIT , DONE

and BUSY . The left site shows input sig-
nals according to the slave parallel configu-
ration 4 [3] scheme of Xilinx Spartan-3 FP-
GAs [2]. A particular chip is addressed
directly by the active-low chip select CS

signal and indirectly by the address de-
coder 5 which enables the output OE of the
data bus 3-state transceiver. This decoder
also propagates the read signal RDWR at
proper addresses, otherwise it is LOW so
driving the data bus from the backplane bus
into the FPGA-module local bus. The ad-
dressing for configuration uses the present
bus system without need for any additional

4The 3.3V Configuration of Spartan-3 FPGAs
was applied in order to enable the dual use function
of D[7..0].

5The address decoder is implemented as Lattice
ispGAL22LV10.

Backplane

FPGA−module

A

n.c.

B

n.c.

n.c.

16

T/R

OE

C
S

[1
..6

]

CS[6]

FPGA 6664

64

6

XC3S1000

PROG

RDWR

D[7..0]

CCLK

CS

INIT

DONE

BUSY

Address

Controller Read/Write

Data

Clock

Chip Select

Programming

M[2..0]

74LVT16245
3−state bus transceiver

ispGAL
22LV10

Programming Mode

Figure 2: Configuration of COPACOBANA

ressources. This hardware was tested and
brings a comfortable configuration at a lean
hardware.

4 Conclusion

In this paper a configuration concept for a
massively parallel FPGA architecture was
demonstrated as trade-off between effort
and usability. Furthermore such a system
was presented in brief in order to point
out how the concept was successfully im-
plemented. As conclusion some well known
configuration aspects are worth to think
about for massively parallel scenarios. By
disabling some features and use of proper
workarounds the overall advantage justifies
the concept.



References

[1] S. Kumar, C. Paar, J. Pelzl, G. Pfeif-
fer, M. Schimmler: ”Breaking Ci-
phers with COPACOBANA - a Cost-
Optimized Parallel Code Breaker”,
Conference on Special-purpose Hard-

ware for Attacking Cryptographic Sys-

tems (SHARCS) 2006.

[2] ”Spartan-3 FPGA Family: Com-
plete Data Sheet”, Xilinx Inc.,
www.xilinx.com, March 4, 2005.

[3] K. Goldblatt: ”The 3.3V Configura-
tion of Spartan-3 FPGAs”, Xilinx Inc.,
www.xilinx.com, Application Note 453
(v1.0), 2005.


