
1

Optimum Digit SerialGF (2m) Multipliers for Curve
Based Cryptography

Sandeep Kumar1, Thomas Wollinger, and Christof Paar

Communication Security Group (COSY)

Ruhr-Universitaet Bochum, Germany

Abstract

Digit Serial Multipliers are used extensively in hardware implementations of elliptic and hyperellip-

tic curve cryptography. This contribution shows different architectural enhancements in Least Significant

Digit (LSD) multiplier for binary fieldsGF (2m). We propose two different architectures, the Double

Accumulator Multiplier (DAM) and N-Accumulator Multiplier (NAM) which are both faster compared

to traditional LSD multipliers. Our evaluation of the multipliers for different digit sizes gives optimum

choices and shows that presently used digit sizes are the worst possible choices. Hence, one of the most

important results of this contribution, is that, digit sizes of the form2l − 1, wherel is an integer, are

preferable for the digit multipliers. Furthermore, one should always use the NAM architecture to get the

best timings. Considering the time area product DAM or NAM gives the best performance depending

on the digit size.

Keywords: Bit Serial Multiplier, Digit Serial Multiplier, Least Significant Digit Multiplier,

Elliptic/Hyperelliptic Curve Cryptography, Public Key Cryptography

I. I NTRODUCTION

Curve based cryptography, especially elliptic curve cryptography (ECC) [Mil86], [Kob87] and

more recently also hyperelliptic curve cryptosystems (HECC) [Kob88], has become increasingly

popular in the last few years. These cryptographic primitives are used for exchanging keys over an

insecure channel and for digital signatures. Furthermore, these schemes show good properties for

software and hardware implementation, because of the relatively short operand length compared

to other public-key schemes, like RSA [RSA78]. They are thus often the cryptosystem of choice

for the important domain of embedded applications.

There are two types of Finite fields standardized as underlying structure for ECC and HECC:

prime fieldsGF (p) and characteristic two fieldsGF (2m). The latter ones are often chosen

for hardware realizations due to the smaller hardware circuits required for the corresponding

1The author has been partially supported by Sun Microsystems Laboratories, California, USA.

March 30, 2006 DRAFT

2

arithmetic. In fact, the over-all time and area complexity of ECC and HECC implementations

heavily depends on the finite field multiplier architecture used. Hence, optimizing the multiplier

can have major benefits. The most commonly cited implementations of ECC over characteristic

two fields in literature [GCE+01], [OP00] use digit multipliers with digit sizes of power of2.

Using a digit multiplier allows implementations to do a tradeoff between speed and area. This

allows fast implementations tuned to the available resources of the hardware.

In this paper we present different architectures like Single Accumulator Multiplier (SAM),

Double Accumulator Multiplier (DAM) and N-Accumulator Multiplier (NAM) for the implemen-

tation of the digit multiplier. The naming is based on the number of internal accumulators used to

store the intermediate result. We use these extra accumulators to increase the maximum operating

frequency by reducing the critical path delay of the multipliers. We also give the necessary

conditions that need to be satisfied by the irreducible polynomial for such implementations. We

find that all the standardized NIST polynomials satisfy the required conditions for implementing

these techniques. Evaluating the multiplication speed and the area-time product for the different

architectures leads to the optimum digit sizes for an implementation. These results show that the

cryptosystems can be implemented more efficiently than had been done in the past. For example

for NIST B-163, the most optimum architectures are SAM with digit-size=3 and DAM with

digit-size=6, giving the developer a good choice between area and time.

The remaining of the paper is organized as follows. Section 2 gives an overview of Digit-Serial

Multipliers and conditions for choosing efficient reduction polynomials. Section 3 introduces

our different architectures for the Digit-Serial Multiplier. Section 4 summarizes the different

architectures and Section 5 presents an evaluation of the different architectures to find optimum

digit sizes. Finally, we end this contribution with a discussion of our results and some conclusions.

II. D IGIT-SERIAL MULTIPLIERS.

Finite field multiplication in GF (2m) of two elementsA and B to obtain a resultC =

A·B mod p(α) (wherep(α) is the irreducible polynomial) can be done in various ways based on

the available resources. Digit-serial multipliers, introduced in [SP98] for binary fieldsGF (2m),

are a trade-off between speed, area, and power consumption. This is achieved by processing

several ofB’s coefficients at the same time. The number of coefficients that are processed in

parallel is defined to be the digit-sizeD.

March 30, 2006 DRAFT

3

The total number of digits in the polynomial of degreem− 1 is given byd = dm/De. Then,

we can re-write the multiplier asB =
∑d−1

i=0 Biα
Di, where

Bi =
D−1∑
j=0

bDi+jα
j 0 ≤ i ≤ d− 1 (1)

assumingB has been appropriately padded with zero coefficients for the most significant bits.

Hence, the multiplication can be performed as shown in Algorithm 1.

Algorithm 1 Least Significant Digit (LSD) Multiplier [SP98]

Require: A =
∑m−1

i=0 aiα
i, whereai ∈ GF (2), B =

∑dm
D
e−1

i=0 Biα
Di, whereBi is as in (1)

Ensure: : C ≡ A ·B mod p(α) =
∑m−1

i=0 ciα
i, whereci ∈ GF (2)

1: C ← 0

2: for i = 0 to dm
D
e − 1 do

3: C ← BiA + C

4: A ← AαD mod p(α)

5: end for

6: Return (C mod p(α))

1) Reductionmod p(α) for Digit Multipliers: In LSD, products of the formWαD occurs (as

seen in Step 4 of Algorithm 1) which have to be reducedmod p(α). One can derive equations for

the modular reduction forgeneralirreducible polynomialsp(α). However, it is more interesting to

search for polynomials that minimize the complexity of the reduction operation. For determining

optimum irreducible polynomials we use two theorems from [SP98].

Theorem 1:Assume that the irreducible polynomial is of the formp(α) = αm + pkα
k +

∑k−1
j=0 pjα

j, with k < m. For t ≤ m − 1 − k, αm+t can be reduced to a degree less thanm in

one step with the following equation:

αm+t mod p(α) = pkα
k+t + (

k−1∑
j=0

pjα
j+t) (2)

Theorem 2:For digit multipliers with digit-element sizeD, whenD ≤ m−k, the intermediate

results in Algorithm 1 (Step 4 and Step 6) can be reduced to degree less thanm in one step.

Theorems 1 and 2 implicitly say that for a given irreducible polynomialp(α) = αm + pkα
k +

∑k−1
j=0 pjα

j, the digit-element sizeD has to be chosen based on the value ofk, the degree of

the second highest coefficient in the irreducible polynomial.

March 30, 2006 DRAFT

4

III. A RCHITECTUREOPTIONS

In this section, we provide different architectural possibilities for the implementation of the

LSD multiplier. The architectures are named based on the number of accumulators present in

the multiplier.

A. Single Accumulator Multiplier (SAM)

The Single Accumulator Multiplier (SAM) is same as the Song/Parhi multiplier architecture as

introduced in [SP98]. This kind of architecture is most commonly used in cryptographic hardware

implementations [GCE+01], [OP00]. This architecture consists of three main components as

shown in the Fig. 1.

Accumulator

A!
5
 mod p(!)

Shift Register

b160 b5 b0

163B

a162 a1 a0

163A

c166 c1 c0

+++

167

C =AB mod p(!)

b159 b9 b4

163

167

 mod p(!)

163

1

2

3

Multiplier core

Main Reduction

Multiplier Core

Final Reduction

Fig. 1: LSD-Single Accumulator Multiplier Architecture (D = 5) for GF (2163)

• Themain reduction circuitto shift A left by D positions and to reduce the resultmod p(α)

(Step 4, Algorithm 1).

• The multiplier core which computes the intermediateC and stores it in the accumulator

(Step 3, Algorithm 1).

• The final reduction circuitto reduce the contents in the accumulator to get the final result

C (Step 6, Algorithm 1).

March 30, 2006 DRAFT

5

All the components run in parallel requiring one clock for each step and the critical path of

the whole multiplier normally depends on the critical path of the multiplier core.

Acc

m+D-1

A.bDi+0

A.bDi+1

A.bDi+2

A.bDi+3

A.bDi+4

Fig. 2: SAM multiplier core

for D = 5

D
m

D

k+1

A!
D

D

Fig. 3: SAM main reduction

circuit for D = 5

m+D-1

D-1

m

Acc

C

Fig. 4: SAM final reduction

circuit for D = 5

We give here a further analysis of the area requirements and the critical path of the different

components of the multiplier. In the figures, we will denote an AND gate with a filled dot

and elements to be XORed by a vertical line over them. The number of the XOR gates and

the critical path is based on the binary tree structure that has to be built to XOR the required

elements. Forn elements, the number of XOR gates required isn−1 and the critical path delay

comes out to be the binary tree depthdlog2 ne. We calculate the critical path as a function of

the delay of one XOR gate (∆XOR) and for one AND gate (∆AND). This allows our analysis

to be independent of the cell-technology used for the implementation.

1) Multiplier core: The multiplier core performs the operationC ← BiA + C (Step 3

Algorithm 1). The implementation of the multiplier core is as shown in Fig. 2 for a digit size

D = 5. It consists of ANDing the multiplicandA with each element of the digit of the multiplier

B and XORing the result with the accumulatorAcc and storing it back inAcc. The multiplier

core requiresmD AND gates (denoted by the black dots),mD XOR gates (for XORing the

columns denoted by the vertical line plus the XOR gates for the accumulator) andm + D − 1

Flip-Flops (FF) for accumulating the resultC.

It can be seen that the multiplier core has a maximum critical path delay of one∆AND (since all

the ANDings in one column are done in parallel) and a delay for XORingD+1 elements as shown

in Fig. 2. Thus the total critical path delay of the multiplier core is∆AND +dlog2(D+1)e∆XOR.

2) Main reduction circuit:The main reduction circuit performs the operationA ← AαD mod

p(α) (Step 4 Algorithm 1) and is implemented as shown in Fig. 3. Here the multiplicand

March 30, 2006 DRAFT

6

A is shifted left by the digit-size D which is equivalent to multiplying byαD. The result is

then reduced with the reduction polynomial by ANDing the higher D elements of the shifted

multiplicand with the reduction polynomialp(α) (shown in the figure as pointed arrows) and

XORing the result. We assume that the reduction polynomial is chosen according to Theorem 2

which allows reduction to be done in one single step. It can be shown that the critical path delay

of the reduction circuit can be at most equal or less than that for the multiplier core.

The main reduction circuit requires(k + 1) ANDs and k XORs gates for each reduction

element. The number of XOR gates is one less because the last element of the reduction are

XORed to empty elements in the shiftedA. Therefore a total of(k + 1)D AND and kD XOR

are needed forD digits. Anotherm Flip-Flops(FF) are needed to storeA andk +1 FFs to store

the general reduction polynomial.

The critical path of the main reduction circuit (as shown in Fig. 3) is one AND (since the

ANDings occur in parallel) and the critical path for summation of theD reduction components

with the original shiftedA. Thus the maximum possible critical path delay is∆AND +dlog2(D+

1)e∆XOR, which is the same as the critical path delay of the multiplier core.

3) Final reduction circuit: The final reduction circuit performs the operationC mod p(α),

whereC is of sizem+D−1. It is implemented as shown in Fig. 4 which is similar to the main

reduction circuit without any shifting. Here the most significant(D − 1) elements are reduced

using the reduction polynomialp(α) similarly shown with arrows. The area requirement for this

circuit is (k + 1)(D − 1) AND gates and(k + 1)(D − 1) XOR gates. The critical path of the

final reduction circuit is∆AND + dlog2(D)e∆XOR which is less than that of the main reduction

circuit since the degree of the polynomial reduced is one less (Fig. 4).

An r-nomial reduction polynomial satisfying Theorem 2, i.e.,
∑k

i=0 pi = (r− 1), is a special

case and hence the critical path is upper-bounded by that obtained for the general case given here.

For a fixed r-nomial reduction polynomial, the area for the main reduction circuit is(r − 1)D

ANDs and(r − 2)D XORs. In addition, we requirem flip flops to store intermediate resultA.

However, no flip flops are needed to store the reduction polynomial as it can be hardwired.

Thus the total area is given in Table III and our analysis of the optimum digit size for critical

path and area can be found in Section 5.

March 30, 2006 DRAFT

7

Acc1

Acc2

A.bDi+0

A.bDi+1

A.bDi+2

A.bDi+3

A.bDi+4

Fig. 5: DAM multiplier core for

D = 5

D

m

D

D

A!
D

k+1

Fig. 6: DAM main reduction

circuit for D = 5

m-1

D-1

m

Acc 2

C

Acc 1

Fig. 7: DAM final reduction

circuit for D = 5

B. Double Accumulator Multiplier (DAM)

The DAM multiplier is the new variant of the SAM multiplier that we propose. They differ in

the multiplier core only. Here we use two accumulators to store the partial productC such that

we can reduce the critical path of the multiplier core. The architecture is shown in the Fig. 5.

The first accumulator Acc1 addsdD/2e of the elements and the other accumulator Acc2 adds

the remainingbD/2c elements.

Therefore the longest critical path in the DAM core is caused by the part involving Acc1. The

delay here is one AND gate (since ANDings occur in parallel) and the delay for accumulating

dD/2e+1 elements. Thus the critical path delay of the multiplier core is∆AND +dlog2(dD/2e+
1)e∆XOR. The lower delay has an advantage only if the critical path of the other components

(reduction circuits) also have a smaller or equal delay. Therefore the conditions on the reduction

polynomial are more stringent than in the SAM case. We provide here a theorem which shows

how to choose such a reduction polynomial.

D

k+1

D

Fig. 8: Overlap case

D

k+1

k
+
1

D

Fig. 9: Underlap case

Theorem 3:Assume anr-nomial irreducible reduction polynomialp(α) = αm + pkα
k +

∑k−1
i=0 piα

i, with k ≤ m −D and
∑k

i=0 pi = (r − 1). For a digit multiplier implemented using

March 30, 2006 DRAFT

8

two accumulators for the multiplication core (DAM), the reduction polynomialp(α) satisfying

the following condition can perform reduction with a smaller critical path than the multiplier

core:

D ≤ (m + 1)/2:
∑D+j

i=0+j pi ≤ dD/2e for 0 ≤ j < m− 2D + 2

D > (m + 1)/2: (r − 1) ≤ dD/2e
(3)

Proof: There are two different cases which affect howr can be chosen based on the

number of reduction elements in the XOR tree. The first we call theoverlap case when there

are a maximum ofD reducing elements in a column (Fig. 8) and the second theunderlapcase

where the maximum number of reducing elements in a column is less thanD (Fig. 9).

1) Case 1: Overlap:For the reduction elements to overlap as shown in the Fig. 8, the second

highest degree of the reduction polynomialk, should satisfy the condition(k + 1) ≥ D. We

denote the number of overlapping columns (shown by the shaded lines) asq = k+1−(D−1) ≤
m− 2D + 2. If we now analyze each of these columns in the overlapping region, it consists of

XORing D consecutive coefficients ofp(α) with the shiftedA. For example, in the rightmost

column it is(
∑D−1

i=0 pi + 1) and in the next column it is(
∑D

i=1 pi + 1) and so on. Therefore the

critical path of the circuit is the maximum critical path of any of these columns and should be

less than equal to that of the multiplier core. This can be expressed as

dlog2(
∑D−1+j

i=0+j pi + 1)e∆XOR ≤ dlog2(dD/2e+ 1)e∆XOR for all 0 ≤ j < m− 2D + 2 (4)

The result in Equation (3) can be easily obtained from this. The implication of the result is that

the sum of anyD consecutive coefficients in the reduction polynomial that lie in the overlap

region should be less than equal todD/2e.
2) Case 2: Underlap:The reduction elements underlaps as shown in the Fig. 9 for the

remaining possible values ofk, i.e., (k + 1) < D. The number of reduction elements being

added in the underlap region is not more thank. The maximum number of reduction elements

that can be present along any column can be(r − 1) (like the shaded columns in the figure)

since the reduction polynomial is anr-nomial. The condition on the critical path delay is now

dlog2(
∑k

i=0 pi + 1)e∆XOR ≤ dlog2(dD/2e+ 1)e∆XOR (5)

This leads to the condition Equation (3) given in the theorem. This implies that the sum of all

the non-zero coefficients (except the highest degree) in the reduction polynomial should be less

than equal todD/2e.

March 30, 2006 DRAFT

9

In the Table I, we provide the possible digit sizes for NIST recommended ECC reduction

polynomials. We see that the only difference in the condition between SAM and DAM is for

163-bit reduction polynomial where the digit-sizeD = 2 is not possible. This shows that NIST

curves implemented in the SAM architecture can be easily converted to the DAM architecture

and does not require any extra constraints.

TABLE I: NIST recommended reduction polynomial for ECC and digit sizes possible

possible D

p(t) SAM DAM

x163 + x7 + x6 + x3 + 1 ≤ 156 ≤ 156 except{2}
x233 + x74 + 1 ≤ 159 ≤ 159

x283 + x12 + x7 + x5 + 1 ≤ 271 ≤ 271

x409 + x87 + 1 ≤ 322 ≤ 322

x571 + x10 + x5 + x2 + 1 ≤ 561 ≤ 561

The addition of an extra accumulator also increases the size of the multiplier. Therefore we

give an exact count of gates for the new multiplier which will allow us to perform a realistic

comparison in terms of area-time product with the other multiplier designs. Evaluating the size

of the multiplier, the three different components of the multiplier require the following area:

• The multiplier coreneedsmD AND gates and for the XORing we have two accumulators,

where accumulator Acc1 needs to XORdD/2e+1 elements and accumulator Acc2 needs to

XOR bD/2c+1 elements. Hence the total XOR-gates required aredD/2e∗m+bD/2c∗m =

mD.

We require(m+dD/2e−1)+(m+bD/2c−1) = 2m+D−2 FFs for the two accumulators.

Adding up the two accumulators (which is done with the final reduction) requires additional

m− 1 XORs which is the overlapping region of the two accumulators.

• The main reduction circuitarea is the same as discussed for SAM r-nomial irreducible

polynomial: (r − 1)D AND, (r − 2)D XOR gates andm FF for A.

• Final reduction is done using(r − 1)(D − 1) AND and (r − 1)(D − 1) XOR gates.

Remark 1:The addition of the two accumulators is done as part of the final reduction circuit

in the last cycle. Since the final reduction circuit has a critical path smaller that of the main

reduction circuit, the overall critical path is not greater than that of the multiplier core.

March 30, 2006 DRAFT

10

C. N -Accumulator Multiplier (NAM)

The N -Accumulator Multiplier is a more generalized version of the DAM. Here we try to

reduce the critical path further (assuming additional conditions on the reduction polynomial) by

having multiple accumulators calculating the partial sumC.

Assumingn accumulators summing the partial sum, the largest critical path in the multiplier

core is∆AND+dlog2dD/ne+1e∆XOR. The accumulators are themselves XORed using a different

tree of critical pathdlog2ne∆XOR in an extra clock at the end (hence the overall latency of the

multiplier will be increased by one clock cycle). Care has to be taken that the final accumulation

critical path is not greater than that of the multiplier core, i.e.,dlog2ne ≤ dlog2dD/ne+1e. This

is true when the number of accumulators is less than equal to the maximum number of elements

XORed in any of the accumulators (which is a tighter bound than in the equation).

The condition on the reduction polynomial such that the reduction circuit has lesser critical

path delay than the multiplier core is an extension of Theorem 3 as given below.

Theorem 4:Assume that r-nomial reduction polynomialp(α) = αm +pkα
k +

∑k−1
i=0 piα

i, with

k ≤ m−D and
∑k

i=0 pi = (r− 1). For a digit multiplier implemented usingn accumulators for

the multiplication core (NAM), the reduction polynomialp(α) satisfying the following condition

can perform reduction with a smaller critical path than the multiplier core:

D ≤ (m + 1)/2:
∑D−1+j

i=0+j pi ≤ dD/ne for 0 ≤ j < m− 2D + 2

D > (m + 1)/2: (r − 1) ≤ dD/ne
(6)

Proof: Similar to the proof for Theorem 3.

For the calculation of the area requirement for NAM, we assume that each of the accumulator

accumulatesqi, 1 ≤ i ≤ n elements such that
∑n

i=1 qi = D.

• The multiplier core needsmD AND gates and for the XORing we requireq1 ∗m + q2 ∗
m + . . . + qn ∗m = mD XOR gates. The FFs required for the accumulators are(m + q1−
1) + (m + q2 − 1) + . . . + (m + qn − 1) = nm + D − n.

• The main reduction is same as before(r − 1)D AND, (r − 2)D XOR andm FF for A.

• The final reduction is done using(r − 1)(D − 1) AND and (r − 1)(D − 1) XOR gates.

• For the final accumulation, any two adjacent accumulators have only(m − 1) elements

overlapping. Therefore the total number of XORs for the accumulation tree is(m−1)(n−1).

An additionalm+D−1 FF are required to store the result as unlike the DAM, the addition

is done in a separate clock cycle.

March 30, 2006 DRAFT

11

IV. SUMMARY OF THE MULTIPLIER OPTIONS

In this section we summarize the different architecture options. Table II shows the latency

(in clocks) and the critical path of three different architectures assuming the digit-sizes satisfy

the required conditions. The latency for NAM is greater due an extra last cycle to sum all the

accumulators.

TABLE II: LSD Multiplier: Latency and critical path

Latency Critical Path

SAM (D ≥ 2) dm/De+ 1 1∆AND + dlog2(D + 1)e∆XOR

r-nomial

DAM (D ≥ 2) dm/De+ 1 1∆AND + dlog2(dD/2e+ 1)e∆XOR

r-nomial

NAM (n ≥ 3, D > n) dm/De+ 2 1∆AND + dlog2(dD/ne+ 1)e∆XOR

r-nomial

Table III shows the area requirement for the proposed architectures. As expected the area is

larger for the new architectures, but the area-time product is better in the DAM and NAM case

as will be shown in Section 5.

TABLE III: LSD Multiplier: Area

XOR # AND # FF

SAM (D ≥ 2)

general (m + k)D + (k + 1)(D − 1) (m + k + 1)D + (k + 1)(D − 1) 2m + D + k

r-nomial (m + r − 2)D + (r − 1)(D − 1) (m + r − 1)D + (r − 1)(D − 1) 2m + D − 1

DAM (D > 2) (m + r − 2)D + (r − 1)(D − 1) (m + r − 1)D + (r − 1)(D − 1) 3m + D − 2

r-nomial +(m− 1)

NAM (n ≥ 3, (m + r − 2)D + (r − 1)(D − 1) (m + r − 1)D + (r − 1)(D − 1) (n + 2)m + 2D

D > n), r-nomial +(m− 1)(n− 1) −(n + 1)

V. EVALUATION OF THE IMPLEMENTATION OPTIONS

We evaluated the NIST B-163 polynomial (which is in wide-spread use in real-world ap-

plications) on the multipliers for different digit sizes to find the optimum values. We use the

March 30, 2006 DRAFT

12

critical path estimation and latency to calculate the time required for one multiplication. The

area is calculated using the estimation we made for each component of the multiplier (tabulated

in Table III). Real world estimations are done using the standard cell library from [VLS03].

A. Evaluation of the SAM

Our single accumulator multiplier architecture is same as the digit multipliers used in the open

literature. In order to allow an analysis of this multiplier we draw Fig. 10. This figure shows

the time taken to complete one multiplication for different digit sizes for SAM.

Concluding from Fig. 10 one realizes, that the digit-size D equals a powers of2 like 4, 8, 16, 32, 64

are the local worse values. However, these kind ofD values are normally used as digit-sizes for

ECC implementations [GCE+01], [OP01].

In addition one can see that values of D of the form2l−1 are optimum because of the optimum

binary tree structure they generate. Since the multiplier is the most important component in these

cryptosystems which also dictates the overall efficiency, changing the digit sizes to the more

optimum values can give a much better performance.

Fig. 10: Time to complete one multiplication of the single accumulator multiplier

We can generate a very fast design by using a lot of resources, hence a large digit-size leads

to a faster multiplier. Thus, one has to consider speed and area in order to get the optimum

multiplier, like using the area-time product. Fig. 11 we draw the area-time product over different

March 30, 2006 DRAFT

13

digit-sizes of the single accumulator multiplier. This plot clearly shows that most commonly

used digit sizes are not only slower but also inefficient in terms of the area-time product used.

Better and faster implementations of public key cryptography can be obtained using traditional

LSD SAM multiplier by choosingD = 2l − 1. For example a SAM multiplier with D=3 can

compute a multiplication in the same time as D=4 but will require much smaller area. For D=7,

the multiplier would compute the result faster than D=8 with 10% lesser area.

700E+04

900E+04

1.100E+04

1.300E+04

1.500E+04

1.700E+04

1.900E+04

2.100E+04

1
 5
 9
 13
 17
 21
 25
 29
 33
 37
 41
 45
 49
 53
 57
 61
 65

digit size

u
m

^2
*n

s

D=4

D=3

D=8

D=7

D=16

D=15

D=32

D=31

Fig. 11: Area-Time Product of the single accumulator multiplier

B. Evaluation of all multiplier options

In this subsection, we are going to compare all our introduced multiplier options. Fig. 12

shows the time requirements for the different multipliers. As expected, DAM and NAM (n=3)

architectures are faster than SAM. Its important to note that the optimum digit sizes changes

for different architectures. This is because of the optimum tree structures which are formed at

different sizes ofD within the DAM and NAM architecture. For example one should rather use

D=4 for NAM, whereas this digit size will be not optimal for DAM and SAM. For DAM and

SAM we rather would use D=3.

The area-time product of the multipliers is plotted in Fig. 13. This shows that DAM and NAM

are also efficient architectures when we consider speed and resources of hardware used.

March 30, 2006 DRAFT

14

Fig. 12: Time to complete one multiplication of all the different multiplier implementations

NAM can be inefficient for smallD sizes because of the extra overhead in area due to

the registers and the extra clock cycle in the last step. The designer has to choose the right

architecture based on various constraints like area and speed. For example, if the designer had a

compromise of area and speed at D=8 for a SAM architecture, then he can either implement it

with the same or smaller area with SAM (D=7) or DAM with D=6 or NAM (n=3) with D=3 with

much better speed. This extra flexibility eventually allows the designer to built more optimum

cryptosystems than presently available.

500E+04

700E+04

900E+04

1.100E+04

1.300E+04

1.500E+04

1.700E+04

1.900E+04

1
 5
 9
 13
 17
 21
 25
 29
 33
 37
 41
 45
 49
 53
 57
 61
 65

digit size

u
m

^2
*n

s

SAM

DAM

NAM (n=3)

D=3

D=4

D=7

D=8

D=15

D=16

D=31

D=32

Fig. 13: Area-Time Product of the different multiplier implementations

March 30, 2006 DRAFT

15

VI. CONCLUSIONS

In this contribution, we showed new architectures for implementing LSD multipliers. The

conditions that apply on the irreducible polynomial to successfully implement such architectures

are given. It can be seen that all NIST recommended polynomials easily satisfy these conditions,

which make these architectures very promising for implementing curve based public key cryp-

tosystems. An evaluation of the multipliers for different digit sizes provide optimum values of

D which give the best efficiency for a required speed. This has enabled us to show that present

digit-sizes being used are the worst choices and much better implementations are possible. The

different possible architectures also provide the designer with more flexibility in making the

compromise between area and time which is inherent in all implementations.

REFERENCES

[GCE+01] N. Gura, S. Chang, H. Eberle, G. Sumit, V. Gupta, D. Finchelstein, E. Goupy, and D. Stebila. An End-to-End

Systems Approach to Elliptic Curve Cryptography. In Ç. K. Koç and C. Paar, editors,Cryptographic Hardware

and Embedded Systems — CHES 2001, volume LNCS 1965, pages 351–366. Springer-Verlag, 2001.

[Kob87] N. Koblitz. Elliptic curve cryptosystems.Mathematics of Computation, 48:203–209, 1987.

[Kob88] N. Koblitz. A Family of Jacobians Suitable for Discrete Log Cryptosystems. In Shafi Goldwasser, editor,Advances

in Cryptology - Crypto ’88, volume LNCS 403, pages 94 – 99, Berlin, 1988. Springer-Verlag.

[Mil86] V. Miller. Uses of elliptic curves in cryptography. In H. C. Williams, editor,Advances in Cryptology — CRYPTO

’85, volume LNCS 218, pages 417–426, Berlin, Germany, 1986. Springer-Verlag.

[OP00] G. Orlando and C. Paar. A High-Performance Reconfigurable Elliptic Curve Processor forGF (2m). In Ç. K. Koç

and C. Paar, editors,Cryptographic Hardware and Embedded Systems — CHES 2000, volume LNCS 1965. Springer-

Verlag, 2000.

[OP01] G. Orlando and C. Paar. A ScalableGF (p) Elliptic Curve Processor Architecture for Programmable Hardware. In

Ç. K. Koç, D. Naccache, and C. Paar, editors,Workshop on Cryptographic Hardware and Embedded Systems —

CHES 2001, volume LNCS 2162, pages 348–363. Springer-Verlag, May 14-16, 2001.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.

Communications of the ACM, 21(2):120–126, February 1978.

[SP98] L. Song and K. K. Parhi. Low energy digit-serial/parallel finite field multipliers.Journal of VLSI Signal Processing,

19(2):149–166, June 1998.

[VLS03] VLSI Computer Architecture, Arithmetic, and CAD Research Group – Deparment of Electrical Engineering, IIT,

Chicago, IL. IIT Standard Cells for AMI0.5µm and TSMC0.25µm/0.18µm (Version 1.6.0) , 2003. Library and

documentation available from http://www.ece.iit.edu/ vlsi/scells/home.html.

March 30, 2006 DRAFT

