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Abstract

There is a re-emerging demand for low-end devices such as 8-bit processors, driven

by needs for pervasive applications like sensor networks and RF-ID tags. Security

in pervasive applications, however, has been a major concern for their widespread

acceptance. Public-key cryptosystems (PKC) like RSA and DSA generally involve

computation-intensive arithmetic operations with operand sizes of 1024 − 2048 bits,

making them impractical on such constrained devices.

Elliptic Curve Cryptography (ECC) which has emerged as a viable alternative is a

favored public-key cryptosystem for embedded systems due to its small key size, smaller

operand length, and comparably low arithmetic requirements. However, implementing

full-size, standardized ECC on 8-bit processors is still a major challenge and normally

considered to be impracticable for small devices which are constrained in memory and

computational power.

The thesis at hand is a step towards showing the practicability of PKC and in

particular ECC on constrained devices. We leverage the flexibility that ECC provides

with the different choices for parameters and algorithms at different hierarchies of the

implementation. First a secure key exchange using PKC on a low-end wireless device

with the computational power of a widely used 8-bit 8051 processor is presented. An

Elliptic Curve Diffie-Hellman (ECDH) protocol is implemented over 131-bit Optimal

Extension Field (OEF) purely in software. A secure end-to-end connection in an

acceptable time of 3 seconds is shown to be possible on such constrained devices without

requiring a cryptographic coprocessor.

We also investigate the potential of software/hardware co-design for architectural

enhancements including instruction set extensions for low-level arithmetic used in ECC,

most notably to speed-up multiplication in the finite fields. We show that a standard

compliant 163-bit point multiplication can be computed in 0.113 sec on an 8-bit AVR

micro-controller running at 4 Mhz (a typical representative for a low-cost pervasive pro-

cessor) with minimal additional hardware extensions. Our design not only accelerates

the computation by a factor of more than 30 compared to a software-only solution, it

also reduces the code-size and data-RAM. Two new custom instructions for the MIPS

32-bit processor architecture are also proposed to accelerate the reduction modulo a

pseudo Mersenne prime. We also show that the efficiency of multiplication in an OEF

can be improved by a modified multiply and accumulate unit with a wider accumula-

tor. The proposed architectural enhancements achieve a speed-up factor of 1.8 on the

MIPS processor.
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In addition, different architectural enhancements and optimal digit-size choices for

the Least Significant Digit (LSD) multiplier for binary fields are presented. The two

different architectures, the Double Accumulator Multiplier (DAM) and N-Accumulator

Multiplier (NAM) are both faster compared to traditional LSD multipliers.

Later, an area/time efficient ECC processor architecture (for the OEFs of size 169,

289 and 361 bits) which performs all finite field arithmetic operations in the discrete

Fourier domain is described. We show that a small optimized implementation of ECC

processor with 24k equivalent gates on a 0.35um CMOS process can be realized for

169-bit curve using the novel multiplier design. Finally we also present a highly area

optimized ASIC implementation of the ECC processor for various standard compliant

binary curves ranging from 133 − 193 bits. An area between 10k and 18k gates on a

0.35um CMOS process is possible for the different curves which makes the design very

attractive for enabling ECC in constrained devices.
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Kurzdarstellung

Aufgrund der allgegenwärtigen Präsenz von eingebetteten Systemen, z.B. basierend

auf Sensornetzwerken und RF-ID-Tag, ist wieder eine zunehmende Nachfrage nach

kostengünstigen Geräten, wie z.B. 8-Bit Mikroprozessoren, zu beobachten. Dabei stellt

die kryptographische Sicherheit dieser Geräte eine größe Hürde für ihre breite Akzep-

tanz dar. Asymmetrische Kryptosysteme (engl. public-key cryptosystems, PKC) wie

RSA und DSA sind nicht für den Einsatz auf solchen beschränkten, eingebetteten

Geräten geeignet, weil sie im Allgemeinen für arithmetische Operationen Langzahlen

(1024-2048 Bit Operanden) verwenden.

Die Elliptische Kurven Kryptographie (engl. Elliptic Curve Cryptography, ECC)

hat sich als geeignete Alternative für eingebettete Systeme herausgestellt, weil sie mit

kleinen Schlüssellängen, kleineren Operanden und vergleichsweise geringen arithmetis-

chen Anforderungen auskommt. Die Implementierung eines standardisierten ECC Al-

gorithmus auf 8-Bit Prozessoren stellt indes immer noch eine große Herausforderung

dar, die als nicht praktikabel für rechen- und speicherbeschränkte Geräte angesehen

wird.

In dieser Dissertation wird die Umsetzbarkeit von asymmetrischen Verfahren, ins-

besondere der Elliptische Kurven Kryptographie, auf Geräten mit beschränkten Re-

sourcen behandelt. Die Elliptische Kurven Kryptographie ermöglicht ein großes Maß

an Flexibilität aufgrund möglicher Freiheitsgrade bzgl. der Wahl verschiedenener Pa-

rameter und Algorithmen, welche in dieser Arbeit diskutiert und effizient implementiert

werden. So wird zuerst gezeigt, dass es möglich ist, einen sicheren Schlüsselaustausch

basierend auf ECC auf einem kostengünstigen, für drahtlose Anwendungen ausgelegten

Prozessor (vergleichbar mit dem dem weit verbreiteten 8-Bit 8051 Mikroprozessor) zu

implementieren. Diese gänzlich auf Software basierende Implementierung des Diffie-

Hellman Protokolls mit Elliptischen Kurven (Elliptic Curve Diffie-Hellman, ECDH)

führt arithmetische Berechnungen in einem optimalen 131-Bit Erweiterungskörper (op-

timal extension field, OEF) durch. Eine kryptografisch sichere Verbindung zwis-

chen zwei Endteilnehmern wird auf einem solchen Gerät ohne kryptographischen Co-

Prozessor innerhalb von drei Sekunden hergestellt.

Desweiteren untersuchen wir die Möglichkeiten von Software/Hardware Co-Design

Ansätzen um mittels Architekturmodifikationen, z.B. Befehlssatzerweiterungen (In-

struction Set Extensions, ISE) für körperarithmetische Basisoperationen wie sie bei

ECC zum Einsatz kommen, die Performanz zu steigern. Es wird gezeigt, dass eine

standardisierte 163-Bit Punkt-Multiplikation mit minimalen zusätzlichen Hardware-
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Kosten auf einem 8-Bit AVR Mikro-Controller (ein typischer, kostengünstiger Prozes-

sor), der mit 4 MHz getaktet ist, in 0,113 Sekunden ausgeführt werden kann. Dieses

Design bringt im Vergleich zu einer rein Software-basierten Implementierung einen

Geschwindigkeitsgewinn um mehr als das 30-fache, während die Größe des Quelltext

verringert und weniger Arbeitspeicher verbraucht wird. Zusätzlich werden zwei neue

Befehle für den MIPS 32-Bit Prozessor vorgeschlagen, die Reduktionen modulo Pseudo-

Mersenne Primzahlen beschleunigen. Desweiteren wird gezeigt, dass für Multiplikatio-

nen in einem OEF ein vergrösserter Akkumulator in der ALU von Vorteil ist. Die

vorgestellte Architektur führt zu einem Geschwindigkeitszuwachs um 180

Darüber hinaus werden architektonische Verbesserungen sowie optimale Parame-

ter für Least Significant Digit (LSD) Multiplizierer für Binärkörper vorgestellt. Die

architektonischen Verbesserungen basieren auf einem Double Accumulator Multiplier

(DAM) und N-Accumulator Multiplier (NAM), welche beide klassische LSD Multi-

plizierer bzgl. der Geschwindigkeit übertreffen.

Im Anschluß wird eine effiziente ECC-Prozessorarchitektur (für 169-bit, 289-bit

und 361-bit OEF) vorgestellt, die alle arithmetischen Operationen im Frequenzbereich

durchführt. So wird eine optimierte 169-Bit OEF ECC Implementierung mit 24K

Logikgattern für einen 0.35um CMOS Prozess präsentiert.

Schließlich wird eine flächenoptimierte ECC ASIC Implementierung für Binärköper

mit standardisierte 133 bis 193 Bits vorgestellt. Es wird gezeigt, dass lediglich 10K

bis 18K Logikgatter für eine 0.35um CMOS Implementierung benötigt werden. Daher

eignet sich diese ECC Architektur insbesondere für kostengünstige Implementierungen,

wie sie z.B. in drahtlosen Netzwerken zum Einsatz kommen.
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Chapter 1

Introduction

Ubiquitous computing with low-cost pervasive devices have become a reality with sen-

sor networks and RF-ID applications. Sensor networks offer tremendous benefits for

the future as they have the potential to make life more convenient and safer. These

constrained computing devices form large-scale collaborating networks by exchanging

information. For instance, sensors can be used for climate control to reduce power

consumption, for structures such as bridges to monitor the maintenance status, or for

company badges to locate employees in order to increase productivity. Privacy and

security of this information is important for the overall reliability of these networks

and ultimately to the trustworthiness of the pervasive applications. Reliability in a lot

of applications can be even more important than the secrecy of the data, because it is

a protection against a failure by chance. In fact, security is often viewed as a crucial

feature, a lack of which can be an obstacle to the wide-spread introduction of these

applications. It is also important to note that a large share of those embedded appli-

cations will use wireless communication to reduce wiring costs, and increase flexibility

and mobility. In addition, there is also a growing need for a rising number of mod-

ern appliances to be networked with each other, demanding solutions for cost-effective

wireless networking. However, the main disadvantage of using a wireless network is

that the communication channel is especially vulnerable to eavesdropping and the need

for security becomes even more obvious.

Until a few years ago, only computers and data transferred through the Internet

had been protected against unwanted harm. However, with the growing number of

low-cost pervasive applications which are less secure than traditional systems, makes

them an easy target for future attacks. This could include manipulating or preventing

the functionality of these pervasive systems. In future, when more security critical
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1.1 Security Requirements and Techniques

applications begin to depend on such devices, functionality failures could be even life-

threatening.

We first present the security requirements in such systems (which are also equally

applicable in general settings) and discuss the need for public key cryptography, in

particular Elliptic Curve Cryptography.

1.1 Security Requirements and Techniques

Cryptography, or the art and science of keeping messages secure [70] involves mathe-

matical techniques that provide the following security services:

¥ Confidentiality is a service used to keep the information accessible only to the

authorized users of the communication. This service includes both protection of

all user data transmitted between two points over a period of time as well as

protection of traffic flow analysis.

¥ Integrity is a service that requires that system assets and transmitted informa-

tion be capable of modification only by authorized users. Modification includes

writing, changing the status, deleting, creating, delaying, and replaying of trans-

mitted messages.

¥ Authentication is a service that is concerned with assuring that the origin of

a message, date of origin, data content, time sent, etc are correctly identified.

This service is subdivided into two major classes: entity authentication and data

origin authentication. Note that the second class of authentication implicitly

provides data integrity.

¥ Non-repudiation is a service which prevents both the sender and the receiver

of a transmission from denying previous commitments or actions.

Symmetric-key cryptography (also known as private-key cryptography) provides

the ability to securely and confidentially exchange messages between two parties. This

is especially important if the data should not be revealed to any third party. Integrity

can be guaranteed by using the proper mode of operation with the symmetric cipher.

Authentication without non-repudiation can also be achieved using symmetric key

cryptography if the secret key is known only to the two parties.

Some chip manufacturers have already understood these security needs and include

small symmetric-key cryptographic co-processors for their low cost processors [13].
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Though symmetric key algorithms do provide most of the security services, it has two

major disadvantages:

¥ It requires secure transmission of a secret key, before being able to exchange

messages.

¥ In a networked environment, each pair of users need a different key resulting in

an n user system requiring (n·(n−1)
2

) key pairs .

Setting up this shared secret manually turns out to be unmanageable as such perversive

applications involve a much larger number of entities than in traditional systems. It

also introduces the problem of secure storage of the large number of secret key pairs.

Asymmetric-key cryptography (known generally as public-key (PK) cryptography)

proposed in 1976 by Diffie and Hellman [18] introduces a new concept which can achieve

the above security requirements including non-repudiation.

1.1.1 Public-Key Cryptography

Public-key cryptography is based on the idea of separating the key used to encrypt

a message from the one used to decrypt it. Anyone who wants to send a message

to a party, e.g., Bob, can encrypt that message using Bob’s public key, but only Bob

can decrypt the message using his private key. The basic protocol between the two

communication parties Alice and Bob can be seen in Figure 1.1, where Kpub denotes

the public key of Bob and Kpr the private (not publicly available) key of Bob.

It is understood that the private key should be kept secret at all times and the public

key is publicly available to everyone. Furthermore, it is computationally impossible

(or in any reasonable amount of time) for anyone, except Bob, to derive the private

key.

Public-key algorithm are not only used for the exchange of a key, but also for the

authentication by using digital signatures. This enables the communication parties to

prove that one of them had actually generated the message (non-repudiation). This is

a crucial functionality to assure reliability in pervasive applications. It is important to

note that sender non-repudiation can only be achieved using public-key cryptography.

One can realize three basic mechanisms with public–key algorithms:

¥ Key establishment protocols and key transport protocols without prior exchange

of a joint secret,

¥ Digital signature algorithms, and
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K ! (Kpub,Kpr )

Kpub

X

Y

Y=EKpub(X)

Y

X=DKpr(Y)

X

Y

Alice Bob

Alice and Bob agree on a public-key cryptosystem

Figure 1.1: Public-key encryption protocol

¥ Encryption.

Though public-key schemes can provide all functionality needed in modern security

protocols such as SSL/TLS, it has been the hardest to implement due to its very

high computational requirements. Even when properly implemented, all PK schemes

proposed to date are several orders of magnitude slower than the best known private-

key schemes. Hence, in practice, cryptographic systems are a mixture of symmetric-

key and public-key cryptosystems and are called hybrid cryptosystems. A public-key

algorithm is chosen for key establishment and then a symmetric-key algorithm is chosen

to encrypt the communication data, achieving in this way high throughput rates.

In general, one can divide practical public-key algorithms into three families:

¥ Algorithms based on the Integer Factorization Problem (IFP): given a positive

integer n, find its prime factorization. E.g., RSA [69], the most popular public–

key algorithm named after its creators — Rivest, Shamir, and Adelman

¥ Algorithms based on the Discrete Logarithm Problem (DLP): given α and β find

positive integer k such that β = αk mod p. E.g., the Diffie-Hellman (DH) key

exchange protocol [18] and the Digital Signature Algorithm (DSA) [60].

¥ Algorithms based on Elliptic Curve Discrete Logarithm Problem (ECDLP): given

points P and Q on an elliptic curve defined over a finite field, find positive integer

k such that Q = k ·P . E.g., the Elliptic Curve Diffie-Hellman (ECDH) key ex-

change protocol and the Elliptic Curve Digital Signature Algorithm (ECDSA) [60].
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In addition, there are many other public-key schemes, such as NTRU, or systems based

on hidden field equations, which are not in wide spread use. The scientific community

is only at the very beginning of understanding the security of such algorithms.

The computationally most intensive operation for RSA and Discrete Logarithm

(DL) based public-key schemes are based on modular exponentiation, i.e., the operation

xe mod n. These operations have to be performed using very long operands, typically

1024–2048 bits in length. However for ECDLP systems, the operands are in the range

of 160–256 bits in length. An extended discussion regarding key equivalences between

different asymmetric and symmetric cryptosystems in given in [51]. Table 1.1 puts the

public–key bit length in perspective to the symmetric key algorithms.

Table 1.1: Key length for public–key and symmetric–key cryptography

Symmetric–key ECC RSA/DLP Remarks

64 bit 128 bit 700 bit only short term security

(breakable with some effort)

80 bit 160 bit 1024 bit medium term security

(excl. government attacks)

128 bit 256 bit 2048–3072 bits long term security

(excl. advances in quantum computing)

1.1.2 Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography is a relatively new cryptosystem, suggested independently

in 1986 by Miller [55] and Koblitz [43]. At present, ECC has been commercially

accepted, and has also been adopted by many standardizing bodies such as ANSI [2],

IEEE [36], ISO [38] and NIST [60].

Elliptic curve cryptosystems are based on the well known Discrete Logarithm Prob-

lem (DLP). Elliptic curves defined over a finite field provide a group structure that

is used to implement the cryptographic schemes. The elements of the group are the

rational points on the elliptic curve, together with a special point O (called the “point

at infinity”) acting as the identity element of the group. The group operation is the

addition of points, which can be carried out by means of arithmetic operations in

the underlying finite field (which will be discussed in detail in Chapter 2). A major

building block of all elliptic curve cryptosystems is the scalar point multiplication, an

operation of the form k ·P where k is a positive integer and P is a point on the elliptic
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curve. Computing k ·P means adding the point P exactly k − 1 times to itself, which

results in another point Q on the elliptic curve1. The inverse operation, i.e., to recover

k when the points P and Q = k ·P are given, is known as the Elliptic Curve Discrete

Logarithm Problem (ECDLP). To date, no subexponential-time algorithm is known to

solve the ECDLP in a properly selected elliptic curve group [61]. This makes Ellip-

tic Curve Cryptography a promising branch of public key cryptography which offers

similar security to other “traditional” DLP-based schemes in use today, with smaller

key sizes and memory requirements, e.g., 160 bits instead of 1024 bits (as shown in

Table 1.1).

Many of the new security protocols decouple the choice of cryptographic algorithm

from the design of the protocol. Users of the protocol negotiate on the choice of

algorithm to use for a particular secure session. Hence, ECC based algorithms can

be easily integrated into existing protocols to achieve the same security and backward

compatibility with smaller resources. Hence more low-end constrained devices can use

such protocols which till recently were considered unsuitable for such systems.

1.2 Thesis Outline

With Elliptic Curve Cryptography emerging as a serious alternative, the desired level

of security can be attained with significantly smaller keys. This makes ECC very at-

tractive for small-footprint devices with limited computational capacities, memory and

low-bandwidth network connections. Another major advantage of ECC is that the do-

main parameters can be (judiciously) chosen to improve implementation performance.

However ECC is still considered to be impracticable for very low-end devices. In this

thesis, we show that Elliptic Curve Cryptography can indeed be used on such con-

strained devices without adversely affecting performance. This is made possible based

on the flexibility that ECC provides in terms of the choice of different algorithms and

parameters. We present techniques for ECC implementation in three domains: pure

software based implementations on low-end processors, hardware/software co-design

with extensions for such processors, and finally stand alone low area cryptographic

processors.

In Chapter 2, we first present the mathematical background to the elliptic curves

over different finite fields and their group operations. We also present the different

algorithms that are used for the implementation of the finite field arithmetic and the

1Scalar multiplication in an additive group is the equivalent operation to exponentiation in a
multiplicative group.
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point arithmetic. We restrict our attention only to those algorithms that are relevant

to this thesis. The two most common schemes, ECDH and ECDSA are also presented.

In Chapter 3, we present a public-key cryptographic implementation for secure key

exchange on low-end wireless devices used in sensor networks using elliptic curves. Our

implementation is based on Optimal Extension Fields (OEF) that are a special type

of finite fields Fpm . As our platform we chose a Chipcon CC1010 chip [13] which is

based on the 8051 architecture and is especially suited for secure wireless applications

as it has a built-in radio transceiver as well as a hardware DES engine. We were able

to establish a secure end-to-end connection between the sensor and a base station in

an acceptable time of 3 seconds without requiring a cryptographic coprocessor.

In Chapter 4, we describes a proof-of-concept implementation for an extremely low-

cost instruction set extension using reconfigurable logic, which enables an 8-bit AVR

micro-controller running at 4 Mhz (a typical representative for a low-cost pervasive

processor) to provide full size elliptic curve cryptographic capabilities. We show that

a standard compliant 163-bit point multiplication can be computed in 0.113 sec on

an 8-bit AVR micro-controller running at 4 Mhz with minimal extra hardware. Our

design not only accelerates the computation by a factor of more than 30 compared to

a software-only solution, it also reduces the code-size and data-RAM.

In Chapter 5, we investigate the potential of architectural enhancements and in-

struction set extensions for low-level arithmetic used in public-key cryptography, most

notably multiplication in finite fields of large order. The focus of the contribution is

directed towards the special Optimal Extension Fields where p is a pseudo-Mersenne

(PM) prime of the form p = 2n − c that fits into a single register. Based on the MIPS32

instruction set architecture, we introduce two custom instructions to accelerate the re-

duction modulo a PM prime. Moreover, we show that the multiplication in an OEF

can take advantage of a multiply and accumulate unit with a wide accumulator, so

that a certain number of 64-bit products can be summed up without overflow. The

proposed extensions support a wide range of PM primes and allow a reduction modulo

2n − c to complete in only four clock cycles when n ≤ 32.

In Chapter 6, we show different architectural enhancements in Least Significant

Digit (LSD) multiplier for binary fields F2m . Digit Serial Multipliers are now used

extensively in hardware implementations of Elliptic Curve Cryptography. We propose

two new different architectures, the Double Accumulator Multiplier (DAM) and N-

Accumulator Multiplier (NAM) which are both faster compared to traditional LSD

multipliers. Our evaluation of the multipliers for different digit sizes gives optimum

choices and shows that presently used digit sizes are the worst possible choices. Hence,
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one of the most important results of this contribution is that digit sizes of the form

2l − 1, where l is an integer, are preferable for the digit multipliers. Furthermore,

we show that one should always use the NAM architecture to get the best timings.

Considering the time area product DAM or NAM gives the best performance depending

on the digit size.

In Chapter 7, we propose an area/time efficient ECC processor architecture which

performs all finite field arithmetic operations in the discrete Fourier domain. The

proposed architecture utilizes a class of OEF Fpm where the field characteristic is a

Mersenne prime p = 2n−1 and m = n. The main advantage of our architecture is that

it achieves extension field modular multiplication in the discrete Fourier domain with

only a linear number of base field Fp multiplications in addition to quadratic number

of simpler operations such as addition and bitwise rotation. With its low area and

high speed, the proposed architecture is well suited for Elliptic Curve Cryptography in

constrained environments such as wireless sensor networks.

In Chapter 8, we present a stand-alone highly area optimized ECC processor design

for standards compliant binary field curves. We use the fast squarer implementation

to construct an addition chain that allows inversion to be computed efficiently. Hence,

we propose an affine co-ordinate ASIC implementation of the ECC processor using

a modified Montgomery point multiplication method for binary curves ranging from

133 − 193 bits. An area between 10k and 18k gates on a 0.35um CMOS process is

possible for the different curves which makes the design very attractive for enabling

ECC in constrained devices.

We finally end this dissertation with a summary of our work and some suggestions

for future research.
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Chapter 2

Mathematical Background

Parts of this chapter are published in the survey articles [28] and [27]

2.1 Introduction to Elliptic Curves

An elliptic curve E over a field K is the set of solutions to the cubic equation

E : F (x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0 where ai ∈ K.

and the discriminant defined as

∆ = −d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6 6= 0

where

d2 = a2
1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.

If L is an extension field of K, then the set of L-rational points on E is given as

E(L) = {(x, y) ∈ L× L : F (x, y) = 0} ∪ {O} (2.1)

where O is the point at infinity.

We construct an additive abelian group (E, +) given by the points on the curve and

an additive group operation defined on these points. Hence,

9



2.2 Elliptic Curve Parameter Selection

¥ Set E: Points on the curve given by E(L).

¥ Operation +: P + Q = (x1, y1) + (x2, y2) = R = (x3, y3).

Figure 2.1 shows an example of an elliptic curve over the field of real numbers. Finding

P + Q = R in a geometrical manner can be achieved by the following two steps and is

shown in Figure 2.1:

a) P 6= Q → line through P and Q and mirror the point of third interception along

the x-axis.

b) P = Q ⇒ P +Q = 2Q → tangent line through Q and mirror the point of second

intersection along the x-axis.

Q

x

y

Q+Q=2Q

P+Q

P

Figure 2.1: y2 = x3 + a · x + b over the reals

A more detailed discussion on elliptic curves can be found in [75].

2.2 Elliptic Curve Parameter Selection

An implementation of an elliptic curve cryptosystem requires a number of decisions

to be taken at different hierarchy levels depending on the underlying hardware and
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implementation goals that need to be achieved.

¥ At the field level

¤ Selection of the underlying field (could be F2m , Fp or Fpm).

¤ Choosing the field representation (e.g., polynomial basis or normal basis).

¤ Field arithmetic algorithms for field addition (subtraction), multiplication,

reduction and inverse.

¥ At the elliptic curve level

¤ Choosing the type of representation for the points (affine or projective co-

ordinates).

¤ Choosing a point addition and doubling algorithm.

¥ At the protocol level

¤ Choosing the appropriate protocol (key-exchange or signature).

¤ Choosing the algorithm for scalar multiplication k · P .

These choices provide a huge flexibility and hence makes ECC viable for both

constrained devices and high performance servers. We first present the arithmetic for

different elliptic curves defined over three different field choices Fp (Section 2.3), F2m

(Section 2.4) and Fpm (Section 2.5). Then we present the different methods to perform

the point multiplication in Section 2.6. In Section 2.7, the key-exchange and signature

protocols are discussed. The algorithms that are presented here are limited only to

those that are relevant to this thesis. A more exhaustive list of different algorithms

can be found in references [34, 54].

2.3 Elliptic Curve Arithmetic over Fp

An elliptic curve E over Fp (characteristic not equal to 2 or 3) is the set of solutions

(x, y) which satisfy the simplified Weierstrass equation:

E : y2 = x3 + ax + b (2.2)

where a, b ∈ Fp and 4a3 + 27b2 6= 0, together with the point at infinity O.

The group laws are defined in terms of underlying field operations in Fp as follows:
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Identity

P +O = O + P = P for all P ∈ E(Fp).

Negation

If P = (x, y) ∈ E(Fp), then P + Q = O is given by the point Q = (x,−y) ∈ E(Fp)

which is the negation of P (denoted as −P ). Note, −O = O.

Point Addition and Doubling

Let P = (x0, y0) ∈ E(Fp) and Q = (x1, y1) ∈ E(Fp), where Q 6= −P .

Then P + Q = (x2, y2), where

x2 = λ2 − x0 − x1

y2 = λ(x1 − x2)− y1

(2.3)

and

λ =





y0−y1

x0−x1
if P 6= Q

3x2
1+a

2y1
if P = Q

Projective coordinate representations

The coordinate representation considered so far is known as the affine representation.

However, in many applications it is more convenient to represent the points P and Q

in projective coordinates.

¥ In the standard projective coordinates, a point is represented by the tuple (X :

Y : Z), Z 6= 0 which corresponds to the affine point (X/Z, Y/Z). The point at

infinity O is (0 : 1 : 0) and the negative of (X : Y : Z) is (X : −Y : Z).

¥ In the Jacobian projective coordinates, a point is similarly represented by the tuple

(X : Y : Z), Z 6= 0 which corresponds to the affine point (X/Z2, Y/Z3). The

point at infinity O is (1 : 1 : 0) and the negative of (X : Y : Z) is (X : −Y : Z).

This representation is advantageous when inversion is computationally much more

expensive compared to multiplication in the finite field. The algorithms for projective

coordinates trade inversions in the point addition and doubling operations for a larger

number of multiplications followed by single inversion at the end of the algorithm.
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This single inversion can be computed via exponentiation using the Fermat’s Little

Theorem [12]: x−1 ≡ xp−2 mod p.

One can derive expressions equivalent to Eq. 2.3 for point addition and doubling

operations in both the projective coordinates. We refer to [34] for the actual algorithms.

In Table 2.1 we present the complexity of the group operations considering different

coordinates representations. The complexity of addition or doubling a point on an

elliptic curve is given by the number of field multiplications, squarings and inversions

(if affine coordinates are being used). Field additions are relatively cheap operations

compared to multiplications or inversions, and therefore are neglected in the tables.

Table 2.1: Operation counts for point addition and doubling on y2 = x3 − 3x + b.

A = affine, P = standard projective, J = Jacobin, I = field inversion, M = field

multiplication, S = field squaring [34]

Doubling General addition Mixed coordinates

2A → A 1I, 2M, 2S A + A → A 1I, 2M, 1S J + A → J 8M, 3S

2P → P 7M, 3S P + P → P 12M, 2S

2J → J 4M, 4S J + J → J 12M, 4S

2.3.1 Field Arithmetic over Fp

To perform the above introduced group operations, we have to compute the underlying

field arithmetic operations on the prime field. The crucial field operations are the

modular addition, subtraction, multiplication and inverse.

Addition and Subtraction

Field addition over Fp is performed using multi-precision integer addition followed by

a reduction if required as shown in Algorithm 2.1.
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Algorithm 2.1 Addition in Fp

Input: A,B ∈ Fp.

Output: C ≡ A + B mod p.

1: C ← A + B {multi-precision integer addition }
2: if C ≥ p then

3: C ← C − p

4: end if

5: Return (C)

Similarly subtraction in Fp is a multi-precision integer subtraction followed by an

additional addition with p if the result is negative (Algorithm 2.2).

Algorithm 2.2 Subtraction in Fp

Input: A,B ∈ Fp.

Output: C ≡ A−B mod p.

1: C ← A−B {multi-precision integer subtraction }
2: if C < 0 then

3: C ← C + p

4: end if

5: Return (C)

Multiplication and Squaring

Modular multiplication or squaring can be done by first performing a multi-precision

integer multiplication or squaring, respectively, and then reducing the double bit-length

result with the prime p. Multi-precision integer multiplication and squaring can be

done based on different techniques like operand scanning, product scanning [15] or

Karatsuba method [41]. Each of them has its advantages and disadvantages based on

the underlying implementation hardware.

Field Reduction

Field reduction can be performed very efficiently if the modulus p is a generalized

Mersenne (GM) prime. These primes are sum or differences of a small number of

powers of 2 and have been adopted as recommended curves in different standards like
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NIST [60], ANSI [2] and SEC [1]. The normally used GM primes for different field

sizes are shown here:

p160 = 2160 − 231 − 1

p192 = 2192 − 264 − 1

p256 = 2256 − 2224 + 2192 + 296 − 1

Fast reduction is possible using these primes since the powers of 2 translate nat-

urally to bit locations in hardware. For e.g., 2160 ≡ 231 + 1 mod p160 and therefore

each of the higher bits can be wrapped to the lower bit locations based on the equiva-

lence. The steps required to compute the fast reduction using GM primes is given in

NIST [60]

However when using general primes which are not GM primes, two other different

techniques can be used: Barrett reduction and Montgomery reduction.

The Barrett reduction [8] for r = x mod p is shown in Algorithm 2.3. It requires a

precomputation of µ = bb2k/pc where b is the radix for the representation of x and

is mostly chosen to be the word-size of the processor. This allows all divisions to be

performed in the algorithm as simple word level shifts. The method is suitable if many

reductions are to be done using the same modulus, which is mostly the case.

Algorithm 2.3 Barrett reduction in Fp

Input: x ≤ b2k where b ≥ 3, and µ = bb2k/pc where k = blogb pc+ 1.

Output: r ≡ x mod p.

1: q̂ ← bbx/bk−1c · µ/bk+1c.
2: r ← (z mod bk+1)− (q̂ · p mod bk+1).

3: If r < 0 then r ← r + bk+1.

4: While r ≥ p do: r ← r − p.

5: Return (r)

The Montgomery method [58] uses a special representation to perform arithmetic

efficiently. The cost for changing the representation is costly and therefore this method

is useful only if performing multiple reductions using the same modulus. Let R > p

with gcd(R, p) = 1, then the Montgomery reduction of x < pR is r = xR−1 mod p.

The Algorithm 2.4 shows the procedure where the elements are represented in word

basis b. Choosing R = bn allows the different operations to be simple word level shifts.
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2.3 Elliptic Curve Arithmetic over Fp

Algorithm 2.4 Montgomery reduction in Fp

Input: x < pR where R = bn, gcd(p, b) = 1, and p′ = −p−1 mod b.

Output: r ≡ xR−1 mod p.

1: r ← x {Notation: (r2n−1 · · · r1r0) }
2: for i from 0 to (n− 1) do

3: ui ← rip
′ mod b.

4: r ← r + uip bi.

5: end for

6: r ← r/bn

7: If r ≥ p then r ← r − p.

8: Return (r).

Inversion

Inversion is performed using extended binary Euclidean algorithm which replaces the

expensive division with shifts as shown in Algorithm 2.5.

Algorithm 2.5 Binary Euclidean algorithm in Fp

Input: Prime p and x ∈ [1, p).

Output: r ≡ x−1 mod p.

1: u ← x, v ← p.

2: x1 ← 1, x2 ← 0.

3: while u 6= 1 and v 6= 1 do

4: while u is even do

5: u ← u/2.

6: If x1 is even then x1 ← x1/2; else x1 ← (x1 + p)/2.

7: end while

8: while v is even do

9: v ← v/2.

10: If x2 is even then x2 ← x2/2; else x2 ← (x2 + p)/2.

11: end while

12: If u ≥ v then u ← u− v, x1 ← x1 − x2;

13: Else v ← v − u, x2 ← x2 − x1.

14: end while

15: If u = 1 then Return (x1 mod p); else Return (x2 mod p).
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2.4 Elliptic Curve Arithmetic over F2m

2.4 Elliptic Curve Arithmetic over F2m

An elliptic curve E over F2m is the set of solutions (x, y) which satisfy the simplified

Weierstrass equation:

E : y2 + xy = x3 + ax2 + b (2.4)

where a, b ∈F2m and b 6= 0, together with the point at infinity O. Due to the Weil

Descent attack [21], m is chosen to be a prime.

The group laws are defined in terms of underlying field operations in F2m as follows:

Identity

P +O = O + P = P for all P ∈ E(F2m).

Negation

If P = (x, y) ∈ E(F2m), then P +Q = O is given by the point Q = (x, x+y) ∈ E(F2m)

which is the negation of P (denoted as −P ). Note, −O = O.

Point Addition and Doubling

Let P = (x0, y0) ∈ E(F2m) and Q = (x1, y1) ∈ E(F2m), where Q 6= −P .

Then P + Q = (x2, y2), where

x2 = λ2 + λ + x0 + x1 + a

y2 = λ(x0 + x2) + x2 + y0

(2.5)

and

λ =





y0+y1

x0+x1
if P 6= Q

x1 + y1

x1
if P = Q

Projective coordinate representations

It is more convenient to represent the points P and Q in projective coordinates when

inversions are computationally more expensive compared to multiplications in F2m .

¥ In the standard projective coordinates, a point is represented by the tuple (X :

Y : Z), Z 6= 0 which corresponds to the affine point (X/Z, Y/Z). The point at

infinity O is (0 : 1 : 0) and the negative of (X : Y : Z) is (X : X + Y : Z).

17



2.4 Elliptic Curve Arithmetic over F2m

¥ In the Jacobian projective coordinates, a point is represented by the tuple (X :

Y : Z), Z 6= 0 which corresponds to the affine point (X/Z2, Y/Z3). The point at

infinity O is (1 : 1 : 0) and the negative of (X : Y : Z) is (X : X + Y : Z).

¥ In the López-Dahab (LD) coordinates, a point is represented by the tuple (X :

Y : Z), Z 6= 0 which corresponds to the affine point (X/Z, Y/Z2). The point at

infinity O is (1 : 0 : 0) and the negative of (X : Y : Z) is (X : X + Y : Z).

We refer to [34] for expressions equivalent to Eq. 2.5 for the point addition and dou-

bling operations in the projective coordinates. In Table 2.2, we present the complexity

of the group operations considering different coordinates representations.

Table 2.2: Operation counts for point addition and doubling on y2 +xy = x3 +ax2 + b.
M = field multiplication, D = field division [34]

Coordinate system General addition Mixed coordinates Doubling

Affine D + M — D + M

Standard projective 13M 12M 7M

Jacobian projective 14M 8M 4M

López-Dahab projective 14M 8M 4M

2.4.1 Field Arithmetic over F2m

The field operations required to implement the elliptic curve group operation are ad-

dition, multiplication (squaring) and inverse in F2m .

Polynomial Basis Representation

The standard polynomial basis representation is used for our implementations with the

reduction polynomial F (x) = xm + G(x) = xm +
∑m−1

i=0 gix
i where gi ∈ {0, 1}, for

i = 1, ..., m− 1 and g0 = 1.

Let α be a root of F (x), then we represent A ∈ F2m in polynomial basis as

A(α) =
m−1∑
i=0

aiα
i, ai ∈ F2 (2.6)
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2.4 Elliptic Curve Arithmetic over F2m

This polynomial can also be represented as a bit vector: (am−1, ...a1, a0).

The field arithmetic is implemented as polynomial arithmetic modulo F (x). Notice

that by assumption F (α) = 0 since α is a root of F (x). Therefore,

αm = −G(α) =
m−1∑
i=0

giα
i (2.7)

gives an easy way to perform modulo reduction whenever we encounter powers of α

greater than m−1. Throughout the text, we will write A mod F (α) to mean explicitly

the reduction step.

Addition

F2m addition is the simplest of all operations, since it is a bitwise addition in F2 which

maps to an XOR operation (⊕) in software or hardware.

C ≡ A + B mod F (α)

≡ (am−1 ⊕ bm−1)α
m−1 + . . . + (a1 ⊕ b1)α + (a0 ⊕ b0)

Multiplication and Squaring

The multiplication of two elements A,B ∈ F2m , with A(α) =
∑m−1

i=0 aiα
i and

B(α) =
∑m−1

i=0 biα
i is given as

C(α) =
m−1∑
i=0

ciα
i ≡ A(α) ·B(α) mod F (α) (2.8)

where the multiplication is a polynomial multiplication, and all αt, with t ≥ m are

reduced with Eq. 2.7.

The simplest algorithm for field multiplication is the shift-and-add method [42]

with the reduction step inter-leaved (Algorithm 2.6). The shift-and-add method is not

suitable for software implementations as the bitwise shifts are hard to implement across

the words on a processor. A more efficient method for implementing the multiplier in

software is the Comb method [53]. Here the multiplication is implemented efficiently

in two separate steps, first performing the polynomial multiplication to obtain 2n-bit

length polynomial and then reducing it using special reduction polynomials.

Algorithm 2.7 shows the polynomial multiplication using the Comb method. The

operation SHIFT(A << k) =
∑m−1

i=0 aiα
(i+k), performs a k-bit shift across the words
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2.4 Elliptic Curve Arithmetic over F2m

Algorithm 2.6 Shift-and-Add Most Significant Bit (MSB) first F2m multiplication

Input: A =
∑m−1

i=0 aiα
i, B =

∑m−1
i=0 biα

i where ai, bi ∈ F2.

Output: C ≡ A ·B mod F (α) =
∑m−1

i=0 ciα
i where ci ∈ F2.

1: C ← 0

2: for i = m− 1 downto 0 do

3: C ← bi · (
∑m−1

i=0 aiα
i) + (

∑m−1
i=0 ciα

i) · α mod F (α)

4: end for

5: Return (C)

Algorithm 2.7 Comb Method for F2m multiplication on a w-bit processor.

Input: A =
∑m−1

i=0 aiα
i, B =

∑m−1
i=0 biα

i where ai, bi ∈ F2 and s = dm
w
e.

Output: C = A ·B =
∑2m−1

i=0 ciα
i, where ci ∈ F2

1: C ← 0

2: for j = 0 to w − 1 do

3: for i = 0 to s− 1 do

4: C ← bwi+j · SHIFT(A << w.i) + C

5: end for

6: A ← SHIFT(A << 1)

7: end for

8: Return (C)

without reduction. It is important to note that SHIFT(A << w.i) where w is the word-

length of the processor, are the same original set of bytes referenced with a different

memory pointer and therefore requires no actual shifts in software.

For hardware, the shift-and-add method can be implemented efficiently and is suit-

able when area is constrained. When the bits of B are processed from the most-

significant bit to the least-significant bit (as in Algorithm 2.6), then its implemented

as Most-Significant Bit-serial (MSB) multiplier. Similarly a Least-Significant Bit-serial

(LSB) multiplier can be implemented and the choice between the two depends on the

design architecture and goals. Digit multipliers, introduced in [76], are a trade-off

between speed, area, and power consumption. This is achieved by processing several

of B’s coefficients at the same time. The number of coefficients that are processed in

parallel is defined to be the digit-size D.

The total number of digits in the polynomial of degree m−1 is given by d = dm/De.

20



2.4 Elliptic Curve Arithmetic over F2m

Then, we can re-write the multiplier as B =
∑d−1

i=0 Biα
Di, where

Bi =
D−1∑
j=0

bDi+jα
j 0 ≤ i ≤ d− 1 (2.9)

and we assume that B has been padded with zero coefficients such that bi = 0 for

m − 1 < i < d · D (i.e., the size of B is d · D coefficients, but deg(B) < m). The

multiplication can then be performed as:

C ≡ A ·B mod p(α) = A ·
d−1∑
i=0

Biα
Di mod p(α) (2.10)

The Least-Significant Digit-serial (LSD) multiplier is a generalization of the LSB

multiplier in which the digits of B are processed starting from the least significant to

the most significant. Using Eq. 2.10, the product in this scheme can be represented as

follows

C ≡ A ·B mod p(α)

≡ [B0A + B1(AαD mod p(α)) + B2(AαDαD mod p(α))

+ . . . + Bd−1(AαD(d−2)αD mod p(α))] mod p(α)

Algorithm 2.8 shows the details of the LSD Multiplier.

Algorithm 2.8 Least Significant Digit-serial (LSD) Multiplier [76]

Input: A =
∑m−1

i=0 aiα
i, where ai ∈ F2, B =

∑dm
D
e−1

i=0 Biα
Di, where Bi is as in (2.9)

Output: : C ≡ A ·B =
∑m−1

i=0 ciα
i, where ci ∈ F2

1: C ← 0

2: for i = 0 to dm
D
e − 1 do

3: C ← BiA + C

4: A ← AαD mod p(α)

5: end for

6: Return (C mod p(α))

Remark. If C is initialized to value I ∈ F2m in Algorithm 2.8, then we can obtain as

output the quantity, A ·B+I mod p(α) at no additional (hardware or delay) cost. This

operation, known as a multiply/accumulate operation is very useful in elliptic curve

based systems.
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2.5 Elliptic Curve Arithmetic over Fpm

Field squaring is much simpler in F2m when represented in polynomial basis as show

here:

C ≡ A2 mod F (α)

≡ (am−1α
2(m−1) + am−2α

2(m−2) + . . . + a1α
2 + a0) mod F (α)

(2.11)

Polynomial squaring is implemented by expanding C to double its bit-length by inter-

leaving 0 bits in between the original bits of C and then reducing the double length

result.

Field Reduction

Field reduction of a 2n-bit size polynomial in F2m can be efficiently performed if the

reduction polynomial F (x) is a trinomial or pentanomial, i.e.,

F (x) = xm + xk + 1

or

F (x) = xm + xj + xk + xl + 1

Such polynomials are widely recommended in all the major standards [2, 36, 60]. For

software implementation, reduction polynomials with the middle terms close to each

other are more suitable while for hardware, polynomials with a smaller second highest

degree are favorable. The implementation techniques using the different reduction

polynomials can be found in [11].

2.5 Elliptic Curve Arithmetic over Fpm

A prime extension field is denoted as Fpm for p prime and m a positive integer. There

exist finite fields for all primes p and positive integers m. The elliptic curve group E

over Fpm (characteristic not equal to 2 or 3) is the set of solutions (x, y) which satisfy

the simplified Weierstrass equation for Fpm :

E : y2 = x3 + ax + b (2.12)

where a, b ∈ Fpm and 4a3 + 27b2 6= 0, together with the point at infinity O.

The group laws are same as that for Fp including the point addition and doubling

equations. Therefore all the algorithms that are used for Fp at the elliptic curve level

(like projective coordinate point addition and subtraction) can also be used for Fpm .
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2.5 Elliptic Curve Arithmetic over Fpm

2.5.1 Field Arithmetic over Optimal Extension Fields (OEF)

Fpm is isomorphic to Fp[x]/(P (x)), where P (x) is a monic irreducible polynomial of

degree m over Fp. The choices of p, m, and P (x) can have a dramatic impact on the

implementation performance. In finite fields of special form, specialized algorithms can

give better performance than generic algorithms. Optimal Extension Fields (OEF), as

introduced by Bailey and Paar [5], are a special family of extension fields which offer

considerable computational advantages.

Definition 2.1. An Optimal Extension Field is a extension field Fpmsuch that

1. The prime p is a pseudo-Mersenne (PM) prime of the form p = 2n ± c with

log2(c) ≤ bn/2c.

2. An irreducible binomial P (x) = xm − ω exists over Fp.

We represent the elements of Fpm as polynomials of degree at most m− 1 with

coefficients from the subfield Fp, i.e., any element A ∈ Fpm can be written as

A(t) =
m−1∑
i=0

ai · ti = am−1 · tm−1 + · · ·+ a2 · t2 + a1 · t + a0 with ai ∈ Fp (2.13)

where t is the root of P (x) (i.e., P (t) = 0). The prime p is generally selected to be a

pseudo-Mersenne prime that fits into a single processor word. Consequently, we can

store the m coefficients of A ∈ Fpm in an array of m single-precision words, represented

as the vector (am−1, . . . , a2, a1, a0).

The construction of an OEF requires a binomial P (x) = xm − ω which is irreducible

over Fp. Reference [6] describes a method for finding such irreducible binomials. The

specific selection of p, m, and P (x) leads to a fast subfield and extension field reduction,

respectively.

Addition and Subtraction

Addition and subtraction of two field elements A,B ∈ Fpm is accomplished in a straight-

forward way by addition/subtraction of the corresponding coefficients in Fp.

C(t) = A(t)±B(t) =
m−1∑
i=0

ci · ti with ci ≡ ai ± bi mod p (2.14)
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2.5 Elliptic Curve Arithmetic over Fpm

A reduction modulo p (i.e., an addition or subtraction of p) is necessary whenever the

sum or difference of two coefficients ai and bi is outside the range of [ 0, p− 1] (shown

in Algorithms 2.1 and 2.2). There are no carries propagating between the coefficients

which is an advantage for software implementations.

Multiplication and Squaring

A multiplication in the extension field Fpm can be performed by ordinary polynomial

multiplication over Fp and a reduction of the product polynomial modulo the irre-

ducible polynomial P (t). The product of two polynomials of degree at most m− 1 is

a polynomial of degree at most 2m− 2.

C(t) = A(t) ·B(t) =
( ∑m−1

i=0 ai · ti
)
·
( ∑m−1

j=0 bj · tj
)

≡ ∑m−1
i=0

∑m−1
j=0 (ai · bj mod p) · t(i+j) =

∑2m−2
k=0 ck · tk

(2.15)

There are several techniques to accomplish a polynomial multiplication. The standard

algorithm moves through the coefficients bj of B(t), starting with b0, and multiplies bj

by any coefficient ai of A(t). This method, which is also referred to as operand scanning

technique, requires exactly m2 multiplications of coefficients ai, bj ∈ Fp. However, there

are two advanced multiplication techniques which typically perform better than the

standard algorithm. The product scanning technique reduces the number of memory

accesses (in particular store operations), whereas Karatsuba’s algorithm [41] requires

fewer coefficient multiplications [6].

a0 · b0a1 · b0a2 · b0a3 · b0

a0 · b1a1 · b1a2 · b1

a3 · b1

a0 · b2a1 · b2

a2 · b2

a3 · b2

a0 · b3

a1 · b3

a2 · b3

a3 · b3

c0c1c2c3c4c5c6

Figure 2.2: Multiply-and-accumulate strategy (m= 4)

The product scanning technique employs a “multiply-and-accumulate” strategy [34]

and forms the product C(t) = A(t) ·B(t) by computing each coefficient ck of C(t) at a

time. Therefore, the coefficient-products ai · bj are processed in a “column-by-column”

fashion, as depicted in Figure 2.2 (for m = 4), instead of the “row-by-row” approach

used by the operand scanning technique. More formally, the product C(t) and its
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2.5 Elliptic Curve Arithmetic over Fpm

coefficients ck are computed as follows.

C(t) = A(t) ·B(t) =
2m−2∑

k=0

ck · tk with ck ≡
∑

i+j = k

ai · bj mod p (0 ≤ i, j ≤ m− 1)

(2.16)

The product scanning technique requires exactly the same number of coefficient multi-

plications as its operand scanning counterpart (namely m2), but minimizes the number

of store operations since a coefficient ck is only written to memory after it has been

completely evaluated. In general, the calculation of coefficient-products ai · bj and

the reduction of these modulo p can be carried out in any order. However, it is

usually advantageous to compute an entire column sum first and perform a single

reduction thereafter, instead of reducing each coefficient-product ai · bj modulo p. The

former approach results in m2 reduction operations, whereas the latter requires only

one reduction per coefficient ck, which is 2m− 1 reductions altogether.

When A(t) = B(t), the coefficient-products of the form ai · bj appear once for i = j

and twice for i 6= j. Therefore squaring of a polynomial A(t) of degree m− 1 can be

obtained with only m · (m + 1)/2 coefficient multiplications

Subfield reduction

An integral part of both polynomial multiplication and polynomial squaring is the

subfield reduction which is the reduction of a coefficient-product (or a sum of several

coefficient-products) modulo the prime p. Pseudo-Mersenne primes are a family of

numbers highly suited for modular reduction due to their special form [16]. They allow

to employ very fast reduction techniques that are not applicable to general primes. The

efficiency of the reduction operation modulo a PM prime p = 2n − c is based on the

relation

2n ≡ c mod p ( for p = 2n − c ) (2.17)

which means that any occurrence of 2n in an integer z ≥ 2n can be substituted by the

much smaller offset c. To give an example, let us assume that z is the product of

two integers a, b < p, and thus z < p2. Furthermore, let us write the 2n-bit product

z as zH · 2n + zL, whereby zH and zL represent the n most and least significant bits

of z, respectively. The basic reduction step is accomplished by multiplying zH and c

together and “folding” the product zH · c into zL.

z = zH · 2n + zL ≡ zH · c + zL mod p ( since 2n ≡ c mod p ) (2.18)
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This leads to a new expression for the residue class with a bit-length of at most 1.5n

bits. Repeating the substitution a few times and performing final subtraction of p

yields the fully reduced result x mod p. A formal description of the reduction modulo

p = 2n − c is given in Algorithm 2.9.

Algorithm 2.9 Fast reduction modulo a pseudo-Mersenne prime p = 2n − c with

log2(c) ≤ n/2

Input: n-bit modulus p = 2n − c with log2(c) ≤ n/2, operand y ≥ p.

Output: Residue z ≡ y mod p.

1: z ← y

2: while z ≥ 2n do

3: zL ← z mod 2n { the n least significant bits of z are assigned to zL }
4: zH ← bz/2nc { z is shifted n bits to the right and assigned to zH }
5: z ← zH · c + zL

6: end while

7: if z ≥ p then z ← z − p end if

8: return z

Finding the integers zL and zH is especially easy when n equals the word-size of

the target processor. In this case, no bit-level shifts are needed to align zH for the

multiplication by c.

Extension field reduction

Polynomial multiplication and squaring yields a polynomial C(t) of degree 2m− 2 with

coefficients ck ∈ Fp after subfield reduction. This polynomial must be reduced modulo

the irreducible polynomial P (t) = tm − ω in order to obtain the final polynomial of

degree m− 1. The extension field reduction can be accomplished in linear time since

P (t) is a monic irreducible binomial. Given P (t) = tm − ω, the following congruences

hold: tm ≡ ω mod x(t). We can therefore reduce C(t) by simply replacing all terms of

the form ck · tk, k ≥ m, by ck ·ω · tk−m, which leads to the following equation for the

residue:

R(t) ≡ C(t) mod P (t)

≡ ∑m−1
l=0 rl · tl with rm−1 = cm−1

and rl ≡ (cl+m · ω + cl) mod p for 0 ≤ l ≤ m− 2

(2.19)

The entire reduction of C(t) modulo the binomial P (t) = tm − ω costs at most m− 1

multiplications of coefficients ck by ω and the same number of subfield reductions [5].
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2.6 Elliptic Curve Point Multiplication

In summary, the straightforward way of multiplying two elements in OEF requires

m2 + m− 1 coefficient multiplications and 3m− 2 reductions modulo p. Special opti-

mizations, such as Karatsuba’s method or the “interleaving” of polynomial multiplica-

tion and extension field reduction, allow to minimize the number of subfield operations

(see [34] for details).

Inversion

Inversion in an OEF can be accomplished either with the extended Euclidean algorithm

or via a modification of the Itoh-Tsujii algorithm (ITA) [39], which reduces the problem

of extension field inversion to subfield inversion [5]. The ITA computes the inverse of

an element A ∈ Fpm as

A−1(t) ≡ (Ar(t))−1 ·Ar−1(t) mod P (t) where r =
pm − 1

p− 1
= pm−1 + · · ·+ p2 + p + 1

(2.20)

Efficient calculation of Ar−1(t) is performed by using an addition-chain constructed

from the p-adic representation of r − 1 = (111 . . . 110)p. This approach requires the

field elements to be raised to the pi-th powers, which can be done with the help of

the i-th iterate of the Frobenius map [6]. The other operation is the inversion of

Ar(t) = Ar−1(t) ·A(t). Computing the inverse of Ar(t) is easy due to the fact that for

any element α ∈ Fpm , the r-th power of α, i.e., α(pm−1)/(p−1) is always an element of the

subfield Fp. Thus, the computation of (Ar(t))−1 requires just an inversion in Fp which

can be done using a single-precision variant of the extended Euclidean algorithm.

In summary, the efficiency of the ITA in an OEF relies mainly on the efficiency of

the extension field multiplication and the subfield inversion (see [6, 34]).

2.6 Elliptic Curve Point Multiplication

The scalar point multiplication (an operation of the form k ·P where k is a positive

integer and P is a point on the elliptic curve) is the most basic operation in the im-

plementation of an elliptic curve cryptosystem. There are different ways to implement

point multiplication: binary, m-ary and sliding window methods, signed digit represen-

tation and combination of these methods as described in [23] and [11]. A comparison

of these methods can be found in [29] and [33].
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2.6.1 Binary Method

The most simplest and straightforward implementation is the binary method (as shown

in Algorithm 2.10) which is similar to the square-and-multiply algorithm for exponen-

tiation [42]. We use the Most-Significant Bit (MSB) first variant, since the point P can

be kept fixed (Step 4 Algorithm 2.10) enabling mixed co-ordinates for point addition

to be used. The expected running time for binary method is m
2
·A + m ·D (where A

is a point Addition, D is a point Doubling).

Algorithm 2.10 MSB binary method for point multiplication

Input: P, k, where P ∈ E(K), k ∈ Z+ and log2 k < m

Output: Q = k · P , where Q ∈ E(F2m)

1: Q ← O
2: for i = m− 1 down to 0 do

3: Q ← 2Q.

4: If ki = 1 then Q ← Q + P

5: end for

6: Return(Q)

2.6.2 Non-Adjacent Form (NAF) Method

This method uses the fact that point inverses are quite inexpensive to calculate (see el-

liptic curve group operations). Therefore a signed digit representation of k =
∑t−1

i=0 ki2
i,

where ki ∈ −1, 0, 1 is used for binary method. Non-Adjacent Form (NAF) is a more

efficient signed digit representation in which no adjacent ki’s are nonzero. The NAF

for a positive integer is calculated as shown in the Algorithm 2.11.

The advantage of NAF is that on the average t/3 terms of k are nonzero [59].

Hence, NAF point multiplication (shown in Algorithm 2.12) has an expected running

time of m
3
·A + m ·D.

2.6.3 Windowing Methods

Windowing methods are useful when memory is available for storing pre-computed

points (which is especially useful if the point is fixed) and hence speed up the point

multiplication. The window-NAF and fixed-base Comb methods are some of the effi-

cient windowing based point multiplication algorithms. However for constrained envi-
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2.6 Elliptic Curve Point Multiplication

Algorithm 2.11 Computation of NAF of a positive integer

Input: k, a positive integer

Output: NAF(k)

1: i ← 0

2: while k ≥ 1 do

3: If k is odd then ki ← 2− (kmod4), k ← k − ki;

4: Else ki ← 0

5: k ← k/2, i ← i + 1.

6: end while

7: Return(ki−1, ki−2, · · · , k1, k0).

Algorithm 2.12 Binary NAF method for point multiplication

Input: P, k, where P ∈ E(K), k ∈ Z+ and log2 k < m

Output: Q = k · P .

1: Compute NAF(k) =
∑l−1

i=0 ki2
i. {Using Algorithm 2.11 }

2: Q ← O
3: for i = l − 1 down to 0 do

4: Q ← 2Q.

5: If ki = 1 then Q ← Q + P

6: If ki = −1 then Q ← Q− P

7: end for

8: Return(Q)

ronments, where memory is sparse, such methods are not very attractive. A detailed

description of the algorithms can be found in [34].

2.6.4 Montgomery Method

In [52], a Montgomery method for point multiplication in E(F2m) is introduced which

can be implemented in affine or projective co-ordinates. This method uses the fact

that the x-coordinate of the point P + Q can be derived from the x-coordinates of P ,

Q and P −Q. An iteration is setup to calculate the x-coordinates of kP and (k + 1)P

from which the y-coordinate of kP is derived. Algorithm 2.13 shows the Montgomery

point multiplication in the standard projective co-ordinates. This algorithm computes

the point double and point addition in each iteration independent of ki. Therefore the

expected running time for this algorithm is (6M + 5S + 3A)m + (1I + 10M).
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Algorithm 2.13 Montgomery method for scalar point multiplication in F2m standard

projective co-ordinates

Input: P, k, where P = (x1, y1) ∈ E(F2m), k ∈ Z+ and log2 k < m

Output: Q = k · P , where Q = (x3, y3) ∈ E(F2m)

1: X1 ← x1, Z1 ← 1, X2 ← x4
1 + b, Z2 ← x2

1.

2: for i = m− 2 downto 0 do

3: if ki = 1 then

4: T ← Z1, Z1 ← (X1Z2 + X2Z1)
2, X1 ← x1Z1 + X1X2TZ2.

5: T ← X2, X2 ← X4
2 + bZ4

2 , Z2 ← T 2Z2
2

6: else

7: T ← Z2, Z2 ← (X1Z2 + X2Z1)
2, X2 ← x1Z2 + X1X2Z1T .

8: T ← X1, X1 ← X4
1 + bZ4

1 , Z1 ← T 2Z2
1

9: end if

10: end for

11: x3 ← X1/Z1

12: y3 ← (x1 + X1/Z1)[(X1 + x1Z1)(X2 + x1Z2) + (x2
1 + y)(Z1Z2)](x1Z1Z2)

−1 + y1

13: Return (Q)

2.7 Elliptic Curve Key Exchange and Signature Protocols

The elliptic curve scalar point multiplication is used as the basic operation for con-

structing the ECDLP variants of popularly used DLP protocols like Diffie-Hellman

(DH) key exchange [18] and Digital Signature Algorithm (DSA) [60].

2.7.1 Elliptic Curve Diffie-Hellman Key Exchange

In the Elliptic Curve Diffie-Hellman (ECDH) key exchange, the two communicating

parties server S and client C agree in advance to use the same curve parameters and

base point G. They each generate their random private keys PrS and PrC , respectively,

and then compute their corresponding public keys PuS = PrS ·G and PuC = PrC ·G.

To perform a key exchange, both the client and server first exchange their public

keys. On receiving the other party’s public key, each of them multiply their private

key with the received public key to derive the required common shared secret:

PrC · PuS = PrS · PuC = PrS · PrC ·G.

An attacker cannot determine this shared secret from the curve parameters, G or the

public keys of the parties based on the hard problem, ECDLP. Normally, certified
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2.7 Elliptic Curve Key Exchange and Signature Protocols

public keys are used to maintain integrity and prevent a man-in-the-middle attack.

2.7.2 Elliptic Curve Digital Signature Algorithm

This algorithm is analogues to the Digital Signature Algorithm(DSA) for the DL sys-

tems. Signature generation for the hash of a message m and the verification of the

signature are shown in Algorithm 2.14 and Algorithm 2.15, respectively. As in ECDH,

both the communicating parties need to agree on the same elliptic curve parameters.

Algorithm 2.14 ECDSA signature generation

Input: Public point P in E(K) of order n, private key d and message m.

Output: Signature (r, s)

1: Select a k ∈ [1, n− 1].

2: Compute kP = (x1, y1) and convert x1 to an integer x̂1.

3: Compute r = x̂1 mod n. If r = 0 then repeat from step 1.

4: Compute e = H(m).

5: Compute s = k−1(e + dr) mod n. If s = 0 then repeat from step 1.

6: Return ((r, s))

Algorithm 2.15 ECDSA signature verification

Input: Public point P in E(K) of order n, public key Q, message m and

signature (r, s).

Output: Accept or Reject signature

1: Verify if r, s ∈ [1, n− 1]; else Return(”Reject signature”).

2: Compute e = H(m).

3: Compute w = s−1 mod n.

4: Compute u1 = ew mod n and u2 = rw mod n.

5: Compute X = u1P + u2Q = (x1, y1).

6: If X = O then Return(”Reject signature”);

7: Convert x1 to an integer x̂1; Compute v = x̂1 mod n.

8: If v = r then Return(”Accept signature”); Else Return(”Reject signature”);
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Chapter 3

Software Design: ECDH Key
Exchange on an 8-bit Processor

We present here the results of the collaborative work with Sun Microsystems which

was published in part in [46] and the wireless card-reader application demonstrated at

SunNetwork 2003.

3.1 Motivation and Outline

The main aim of this work was to prove that public-key cryptography can indeed be

used on low-end 8-bit processors (which represents the normal computational capacity

of most low-end sensor networks) without the need for any extra hardware such that it

provides adequate security for establishing the secret keys required for a secure wireless

connection. This goal is achieved using the computational savings and the flexibility

of the Elliptic Curve Cryptography over the special Optimal Extension Fields (OEF).

A further objective was also to demonstrate the ability to setup an end-to-end secure

channel between two communicating devices (across the wired and wireless domains)

using the public key cryptographic implementation.

This chapter is structured as follows: In Section 3.2, we mention the previous re-

lated work. The architecture of our implementation environment Chipcon is described

in Section 3.3. Section 3.4 shows the basis of the different elliptic curve parameter

selections in particular the OEF, and Section 3.5 we describe the implementation as-

pects of the elliptic curve arithmetic. Section 3.6 describes the communication protocol

followed by the description of the demonstration application in Section 3.7.
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3.2 Related Work

ECC on an 8-bit processor have been reported in [14] and [80], both implemented over

Optimal Extension Fields. In [14], the ECC implementation is over the field Fpm with

p = 216 − 165, m = 10, and irreducible polynomial f(x) = x10 − 2. A performance

of 122 msec at 20 Mhz is reported for a 160-bit point multiplication using the math

co-processor for the sub-field multiplication. [80] implements ECC over F(28−17)17 on

an 8051 micro-controller without co-processor, but instead uses the internal 8-by-8-

bit integer multiplier. The authors achieve a speed of 1.95 sec for a 134-bit fixed

point multiplication using 9 pre-computed points and 8.37 sec for a general point

multiplication using binary method of exponentiation.

3.3 The Chipcon Architecture

The platform chosen for the implementation is the Chipcon CC1010 chip [13]. It con-

sists of an 8-bit 8051 processor core with a built-in radio transceiver and a hardware

DES engine. The CC1010 has an optimized processor core which execute one instruc-

tion cycle every four clock cycles, offering roughly 2.5 times the performance of the

original Intel 8051. The 8051 processor is widely used for low-cost applications and

represents the normal computational capacity of a low-end device. The built-in radio

transceiver and DES engine makes this chip an ideal platform for our proof-of-concept.

Chipcon is also a very power efficient device which allows for use in mobile devices.

The CC1010 contains 32 kilobytes of flash memory for storing programs, 2048 bytes

of SRAM external to the 8051 core (XRAM), and 128 bytes of internal SRAM (IRAM).

The chip is clocked at 3.68 Mhz for our implementation and the wireless communication

is done over the 868 Mhz radio frequency.

3.4 Elliptic Curve Parameter Selection

The choice of the finite field is dictated by the characteristics of the implementation

platform. Multi-precision integer arithmetic needed in Fp are costly to implement in

software due to the carries involved. In an 8-bit processor, the cost is further increased

due to the fact that an 8-bit word size translates to a more number of words required

to represent each field element and hence more number of carries. Binary fields F2m

are also hard to implement in software due to the lack of an in-built F2 multiplier.
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However, extension fields Fpm are incredibly suitable for a software implementation

because by a proper choice of parameters we can avoid multi-precision arithmetic that

is required in Fp. The basic idea behind the special extension field OEFs (as described

in Section 2.5.1) is to select the prime p, the extension degree m, and the irreducible

polynomial x(t) to closely match the underlying hardware characteristics. In concrete,

p has to be selected to be a pseudo-Mersenne prime with a bit-length of less than but

close to 8-bits (the word size of the 8051 processor), so that all subfield operations

can be conveniently accomplished with the 8051’s arithmetic instructions. Based on

this constraint, we chose for our implementation the prime as p = 28 − 17 and the

irreducible polynomial as P (x) = x17 − 2, i.e., m = 17.

The field F(28−17)17 provides a security level of 134 bits. Lenstra and Verheul [51]

showed that under certain assumptions, 952-bit RSA and DSA systems may be consid-

ered equivalent in security to a 132-bit ECC system. Therefore the proposed system is

far more secure than a 512-bit RSA system which has been popular for smart card ap-

plications till recently. This security level is appropriate to protect data for a medium

time interval, say one year, and is sufficient for most embedded applications.

3.5 Implementation aspects on the Chipcon processor

There are two dominant performance constraints that determine the efficiency of the

elliptic curve cryptosystem implementation: the efficiency of the scalar multiplication

and the efficiency of the arithmetic in the underlying finite field.

3.5.1 Field Arithmetic

A field element A ∈ F(28−17)17 is stored in memory as a vector of 17 byte-words

(a16, · · · , a1, a0). The field elements are stored in the external RAM (XRAM) and

moved into the internal RAM (IRAM) whenever an arithmetic operation is performed

on them. This is necessary since processor instructions using XRAM data are more

costly (requiring more cycles) than those on IRAM data.

Here, we briefly outline the implementation of addition (subtraction), multiplication,

squaring, and inversion in an OEF based on the mathematical background discussed

in Section 2.5.1.
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Addition and Subtraction

Addition and subtraction of two field elements is done by using the 8051’s integer

addition/subtraction instruction on the corresponding coefficients. A reduction modulo

p is performed only if the carry is generated, i.e., the result is outside the range [ 0, 28).

Therefore, reduction steps are not performed each time as shown in Eq. 2.14, but are

done only if the result cannot be stored within a single byte-word.

Multiplication and Squaring

The subfield multiplication is performed using the 8051’s 8-by-8 bit integer multiplier

instruction. The double-sized result coefficients generated during subfield multiplica-

tion represented as c = c1 28 + c0 , where c0, c1 < 28 is reduced using the Eq. 2.17.

Thus, the equivalence

c ≡ 17c1 + c0 mod (28 − 17)

leads to a very efficient reduction which requires just one multiplication by 17, one

addition, and no division or inversions.

The multiplication in the extension field F(28−17)17 is performed by polynomial mul-

tiplication in product scanning method. The extension field reduction for the double-

sized polynomial is done using the relation x17 ≡ 2 mod (x17 − 2). We can therefore

represent the field multiplication implementation as:

C(t) ≡ A(t) ·B(t) mod P (t)

≡ ĉ16t
16 + (2ĉ32 + ĉ15)t

15 + . . . + (2ĉ18 + ĉ1)t + (2ĉ17 + ĉ0) mod (t17 − 2)

where ĉi ≡
∑

j+k=i ajbk mod (28 − 17).

Squaring is similarly performed except that the polynomial multiplication is much

more easier because of repeating terms.

Inversion

Inversion is accomplished using the modification of the Itoh-Tsujii algorithm (ITA)

described in Section 2.5.1, which reduces the problem of extension field inversion to

subfield inversion. The implementation for ITA in F(28−17)17 is as shown in Algo-

rithm 3.1.

Due to the extreme limits in terms of memory capacity and processing power, the

field operations were implemented in pure assembly for efficiency. This also allowed a

fine grain control on the usage of the internal RAM. The performance for the arithmetic
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3.5 Implementation aspects on the Chipcon processor

Algorithm 3.1 Inversion with modified Itoh-Tsuji method over F(28−17)17

Input: A ∈ F(28−17)17 and P (t) = t17 − 2.

Output: B ≡ A−1 mod P (t) = (Ar)−1Ar−1 where r = (p17 − 1)/(p− 1) = (111...1)p .

1: B0 ← Ap = A(10)p) {Frobenius table lookup }
2: B1 ← B0 · A = A(11)p)

3: B2 ← Bp2

1 = A(1100)p) {Frobenius table lookup }
4: B3 ← B2 ·B1 = A(1111)p)

5: B4 ← Bp4

3 = A(11110000)p) {Frobenius table lookup }
6: B5 ← B4 ·B3 = A(11111111)p)

7: B6 ← Bp8

5 = A(1111111100000000)p) {Frobenius table lookup }
8: B7 ← B6 ·B5 = A(1111111111111111)p)

9: B8 ← Bp
7 = A(11111111111111110)p) {Frobenius table lookup }

10: b ← B8 · A = Ar

11: b ← b−1 { subfield inverse }
12: B ← b ·B8 = (Ar)−1Ar−1

13: Return B

operations are shown in Table 3.1. The inverse operation code size is shown to be

negligible as it involves only calls to the multiplication function.

Table 3.1: Field arithmetic performance on Chipcon (@3.68 Mhz)

Description Operation Time Code size

(µsec) (bytes)

Multiplication A(t)B(t) 5093 5212

Squaring A2(t) 3142 3400

Inversion A−1(t) 24672 neg.

3.5.2 Point Arithmetic

The overall number of field additions, multiplications, and inversions for the point

arithmetic depends heavily on the chosen coordinate system (see Table 2.1). Due to
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the relatively low complexity of the inversion operation, the ratio for inversion time

to multiplication time for our implementation (as shown in Table 3.1) is just 4.8 : 1.

Therefore we choose to use affine coordinates for our point representation. Using affine

coordinates also has the advantage that we require lesser amount of memory for storing

temporary values, which was especially attractive for our low-cost device where limited

memory resources are available.

The point addition and doubling is done as shown in Eq. 2.3. For point multiplica-

tion we use the binary double-and-add method as described in Section 2.6.1. The points

are stored in XRAM, and the appropriate co-ordinates are moved to IRAM when a

field operation is performed on it. The performance for the point operations are shown

in Table 3.2. It takes 2.99 seconds to complete an elliptic curve point multiplication

on the Chipcon platform running at 3.68 Mhz.

Table 3.2: ECC point arithmetic performance on Chipcon (@3.68 Mhz)

Operation Time (msec)

Point Addition 15.395

Point Doubling 14.049

Point Multiplication 2999.8

3.6 Communication Protocol

Figure 3.1 depicts a possible application scenario. Here, a wireless client needs to es-

tablish a secure communication channel to a server on the internet using the gateway

which bridges the wired and the wireless channel. Normally, this secure communica-

tion is achieved using a trusted gateway which creates two different secure channels:

one between the client and the gateway (usually with a symmetric key K2), and the

second between the gateway and the server (using standard public key K1). This is a

compromise made, assuming the constrained wireless clients are not capable enough

to run the standard public key cryptographic algorithms.

However, based on our implementation of ECC which is suitable even for con-

strained devices, we can now present a communication protocol to establish end-to-end

security between the client and the server without the need for a secure gateway. Our
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Figure 3.1: Network security based on a trusted gateway.

communication protocol consists of two phases as shown in Figure 3.2. The first one is

the key establishment phase, which is done initially to exchange the keys using the El-

liptic Curve Diffie-Hellman (ECDH) protocol (described in Section 2.7.1). Thereafter

in normal mode, application data is transmitted.

3.6.1 Key Establishment Phase

The client initiates a connection by relaying a Client Hello with its pre-computed public

key Pucli on the wireless channel. The gateway, which is in receive mode, on receiving

the public key passes it to the server through the wired interface and waits for the

server’s public key. The server daemon, upon receiving the connection request sends a

Server Hello with its public key Puser to the gateway, and then starts computing the

shared secret from the received public key Pucli and the server’s secret key Prser.

MSecret = Prser · Pucli

The gateway transmits the server’s public key to the client and waits for the data

transmission to begin. The client, on receiving the server’s public key (Puser) from the

gateway, computes the master secret.

MSecret = Prcli · Puser
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The client and server now have the same shared master secret MSecret of 134 bits using

the ECDH key exchange. The key for the symmetric DES operation is then derived

from this 134-bit secret.

Client Gateway Server
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Pu

cli Rx Pu
cli

Rx Pu
cli

Server Hello
Pu
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Application Data
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Application Data
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Figure 3.2: Key exchange protocol.

3.6.2 Normal Mode

Once the keys are set up, the client and the server can transmit the application data

encrypted with Triple-DES in CFB mode. To close the connection securely, we use a

close connection control message which deletes the previously generated keys.

3.7 Demonstration Application

We showed the advantage of our ECC implementation with a real-world application of

a mobile wireless card reader, which needs to setup an end-to-end secure connection

to a server. We used two Chipcon CC1010 evaluation modules for our demonstration

setup. One of them is used as a client, which is connected to a portable magnetic stripe

reader used normally as a point-of-sale terminal. The reader presents the encoded data

through an RS-232 serial link to the CC1010. The other evaluation module is used as

a gateway. It listens to the wireless channel, and transmits the data to a PC acting as
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3.7 Demonstration Application

a server connected through a RS-232 serial link. The client device operates on three

1.5V AA batteries, and communicates with the server through the gateway on a radio

frequency of 868 Mhz.

The optimized assembly implementation of ECC runs on the client. The wireless

communication protocol on the client and the gateway was written in C and cross-

compiled using Small-Devices C Compiler (SDCC) [73] tools. On the server side, ECC

algorithms were implemented with OpenSSL [62] and the Number Theory Library

(NTL) [74].

An exchange begins when a user swipes a card with a magnetic stripe, such as

a credit card, on the client device. The client first saves the data encoded on the

magnetic stripe, and then initiates the key exchange protocol described in Section 3.6.

After the 134-bit shared secret is established, we use the first 112 bits as the secret

key for the Triple-DES engine. The card data is then encrypted with Triple-DES in

CFB mode on the client, and decrypted and displayed on the server side. The wireless

range of this demonstration exceeded 100ft indoors. This is another strong argument

for good security in these devices. The client can operate on the same set of batteries

for at least 10 hours continuously, and longer battery life can be achieved if additional

power management software is used.

The overall session setup time for the secure connection took 3.15 sec. The break-

down of memory usage for the implementation is shown in Table 3.3. The code size of

the elliptic curve point multiplication library is 13.5 kilobytes, while the overall demon-

stration program occupied 22.5 kilobytes. The total RAM used also includes variables

for the field arithmetic operations, storage of temporary points and the secret key (an

integer coefficient), and buffers for the communication protocol.

Table 3.3: Memory map for the wireless reader implementation on CC1010

Type Size (bytes) Function

Code 13.5k ECC

9k RF protocol

Internal RAM 128 finite field arithmetic

External RAM 406 temporary points

34 coefficients
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3.8 Summary

We showed here that security protocols based on public key cryptographic algorithms

are possible even on low-end wireless devices, without the need for any additional

extra hardware. We implemented a medium security ECC on an 8-bit 8051 processor,

which represents the normal computational power present in such low-end devices.

A complete key exchange protocol was completed in 3.15 sec, which is acceptable,

considering the additional end-to-end security it enables. A working model of a wireless

card reader communicating with a server was implemented to prove the concept in

practice.
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Chapter 4

Hardware/Software Co-design:
Extensions for an 8-bit Processor

We present here results of the work which was in part published in [47].

4.1 Motivation and Outline

High-volume, low-cost, and very small power budgets of pervasive devices implies they

have limited computing power, often not exceeding an 8-bit processor clocked at a

few Mhz. Under these constraints, secure standardized public-key cryptography for

authentication are nearly infeasible in software, or are too slow to be used within the

constraints of a communication protocol. On the other hand, public-key cryptography

offers major advantages when designing security solutions in pervasive networks. An

alternative, is to use a cryptographic co-processor used in high security applications

like smart-cards, but its downside are considerable costs (in terms of power and chip

area) which makes it unattractive for many of the cost sensitive pervasive applications.

In addition, a fixed hardware solution may not offer the cryptographic flexibility (i.e.,

change of parameters or key length) that is required in real-world applications. An

instruction set extension (ISE) is a more viable option, because of the smaller amount

of additional hardware required and its flexibility. The efficiency of an ISE is not

just measured by the speed-up it achieves, but also in the decrease in code-size, data-

RAM, and power consumption. We investigate here, with the use of a reconfigurable

hardware attached to an 8-bit processor, to obtain reliable cost/benefit estimates for

the proposed extensions.

The chapter is organized as follows: Section 4.2 discusses related work in this field.

In Section 4.3, we describe FPSLIC, which is the development platform that we use.
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In Section 4.4, the implementation of the arithmetic operations without extensions

is showed to determine the peak performance possible, and then discuss the bottle-

necks. Section 4.5, presents the proposed extensions along with the implementation

and results.

4.2 Related Work

There has been considerable work on efficient implementation of ECC in software

for higher-end processors [72, 17, 26, 33]. We list here only the more constrained

environment implementations.

An ECDSA implementation on a 16-bit microcomputer M16C, running at 10 Mhz,

is described in [35]. The authors propose the use of a field Fp with prime characteristic

p = e2c ± 1, where e is an integer within the machine size, and c is a multiple of the

machine word size. The implementation uses a 31-entry table of precomputed points

to generate an ECDSA signature in 150 msec, and performs ECDSA verification in

630 msec. A scalar multiplication of a random point takes 480 msec. The authors in

[26] describe an efficient implementation of ECC over Fp on the 16-bit TI MSP430x33x

family of low-cost micro-controllers running at 1 Mhz. A scalar point multiplication

over F2128−297−1 is performed in 3.4 sec without any precomputation. [78] describes an

implementation on a Palm Pilot running a Dragonball processor. They use a combina-

tion of 16 and 32-bit processing to implement standardized 163-bit NIST curves [60]. A

maximum performance for Koblitz curves with precomputation for ECDSA signature

verification is 2.4 sec, and ECDSA signature generation is 0.9 sec.

The other approach, as mentioned previously, has been to add a crypto co-processor

to these micro-controllers. A survey of commercially available co-processors can be

found in [32]. However, a full-size ECC co-processor may be prohibitively expen-

sive for many pervasive applications. Hardware assistance in terms of Instruction Set

Extensions (ISE) is more favorable as the cost of extra hardware is quite negligible

compared to the whole processor. Previous attempts in this direction [19, 40] are only

reported for ECC with not more than 133-bits.

4.3 The FPSLIC Architecture

The development platform used is the AT94K family of FPSLIC (Field Programmable

System Level Integrated Circuits) device [4]. This architecture integrates an AVR 8-
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bit micro-controller core, FPGA resources, several peripherals, and 36K bytes SRAM

within a single chip. If the FPGA part is left unused, it functions for all practical

purposes as an AVR micro-controller, which is used widely in smart-cards and sensor

networks. The platform is appealing for hardware/software co-design and suited for

System-on-Chip (SoC) implementations.

We use the FPGA to specifically show the effects of additional hardware extensions.

However, we view the reconfigurability not only useful for prototyping purposes, but a

small reconfigurable hardware extension is also an attractive platform for embedded de-

vices, since the extension can offer many speed and power benefits for computationally

intensive applications, as demonstrated in this chapter. It should also be noted that

public-key operations are typically only needed at the initial or final stage of a com-

munication session. Hence, it is perceivable that the ISE can be runtime reconfigured

for other applications, when public-key operations are completed.

The AVR micro-controller is a RISC processor with an 8-bit data bus and 16-

bit address bus. It has 31, 8-bit registers, each connected directly to the ALU. Six

of these registers can also be used as address pointers. Almost all arithmetic and

logical instructions execute in 1 clock cycle. The SRAM is divided into 20K bytes

program memory, 4K bytes data memory, and 12K bytes for dynamic allocation as

data or program memory. The implementations are done on the ATSTK94 FPSLIC

demonstration board clocked at 4 Mhz.

4.4 Implementation aspects on the AVR processor

An efficient ISE implementation requires a tightly coupled hardware and software co-

design. In a first step, we build an assembly optimized software-only implementation

of ECC, to identify the functional elements and code-segments that would provide

efficiency gains if implemented as an ISE. Then, a hardware model of the modified

processor is used to determine the effects of the new extensions especially the running

time, code-size, and data-RAM usage.

We choose the standardized 163-bit elliptic curve over F2m recommended in the

NIST [60] and ANSI [2] standards for our implementation. We use the efficiency of

the scalar point multiplication, k · P over this curve for determining the benefits of

the ISE. First the pure software implementation is done, the arithmetic for which has

been described in detail in Section 2.4.1. Here, we give only a brief overview of the

implementation.
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4.4.1 Field Arithmetic

Since we use the polynomial basis representation with the reduction polynomial

F (x) = x163 + x7 + x6 + x3 + 1, an element in F2163 is represented as an array of 21

byte words in memory, with the five last most-significant bits being ignored.

Field Addition

Addition is the simplest of all operations, since it is a bitwise addition in F2, which

directly maps to word-level XOR operation in software. Since such an XOR instruction

exists on the processor, the addition can be done as 21 word-by-word operations.

Field Multiplication and Squaring

Multiplication is performed in two steps: a polynomial multiplication, followed by re-

duction modulo F (x). As mentioned in Section 2.4.1, the polynomial multiplication

can be most efficiently implemented in software using the Comb method. The imple-

mentation is done as shown in Algorithm 2.7, with w = 8 and m = 163 (giving s = 21)

as parameters for the 8-bit AVR microprocessor.

Squaring is similarly done in two steps: a polynomial squaring, followed by reduc-

tion modulo F (x). Polynomial squaring is a simple expansion by interleaving 0 bits

as shown in Eq. 2.11. The simplest and efficient way to implement this in software is

using a precomputed table. We use a 512 byte table to convert each byte to its 2 byte

expansion.

Field Reduction

Multiplication and squaring algorithms require a second step, in which a polyno-

mial of degree not greater than 324 is reduced to a polynomial of degree 162. The

reduction uses the fact that x163 ≡ x7 + x6 + x3 + 1 mod F (x) to substitute terms

of degree greater than 162. Using the recommended reduction polynomial F (x) =

x163 + x7 + x6 + x3 + 1, with its middle terms close, has the advantage that it can be

effectively implemented using a table lookup for the 8 different bit locations in a byte

with its reduction, which is a 2 byte word.
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4.4.2 Point Arithmetic

We implement the point multiplication using the binary method (Section 2.6.1), Non-

Adjacent Form(NAF) method (Section 2.6.2), and the Montgomery method (Sec-

tion 2.6.4). The implementation is done over projective co-ordinates as inversion

algorithms in F2m are very expensive due to the bit-level shifts. We use the stan-

dard projective co-ordinates because of the Montgomery point multiplication method

used.

Table 4.1: F2163 ECC software-only performance on an 8-bit AVR µC (@4 Mhz)

Operation Time Code-size Data RAM

(clocks) (bytes) (bytes)

Addition 151 180 42

Multiplication 15044 384 147

Squaring 441 46 63

Reduction 1093 196 63

The results of the software only implementation of the field arithmetic is given in

Table 4.1. The point arithmetic performance is included in the Tables 4.2 and 4.3. The

analysis of the software-only implementation shows that F2mmultiplication is the most

costly operation with respect to execution time and memory requirement. Moreover,

in the point multiplication algorithms, field multiplications are extremely frequent

making it the bottleneck operation for ECC. A closer analysis of the multiplication

block showed that the major part of the time was spent for load/store operations,

because of the small number of registers available in the AVR processor which could

not hold the large operands. Therefore, an hardware extension for this functional block

would also have the potential to reduce the memory bottleneck and speed-up the ECC.

4.5 Proposed Instruction Set Extensions

The Instruction Set Architecture (ISA) of a microprocessor, is the unique set of in-

structions that can be executed on the processor. General purpose ISA are often

insufficient to satisfy the special computational needs in cryptographic applications. A
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more promising method is extending the ISA to build Application Specific Instruction-

set Processors (ASIP).

ALU

Data 

registers

ROM

Instr register

Instr Decode

Control

logic

Program

counter

RAM

Data-bus

ISE

Figure 4.1: Processor Core with Extension

There are different ways of extending a processor. We consider an extension as

shown in Fig. 4.1. Here, the additional hardware is closely coupled with the arithmetic

logic unit (ALU) of the processor, reducing the interface circuitry. The control circuit

of the processor is extended to support this extra hardware with new instructions.

When the new instruction is fetched from the code-ROM during the execution of a

program and decoded, the control unit can issue the required control signals to the

ISE block. For multi-cycle instructions, the control logic has to take special care not to

call the custom hardware until the multi-cycle operation is completed. The extension

can also directly access the data-RAM, which is important for reducing delay if the

computation is done over several data elements.

The popular approach to multimedia extensions has been to divide a large 32/64-

bit data-bus into smaller 8-bit or 16-bit multimedia variables, and to run those in

parallel as an SIMD instruction. However, for public-key cryptographic applications,

the reverse is true: the operands are much larger than the data-path, requiring many bit
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4.5 Proposed Instruction Set Extensions

operations on long operands. For such applications, bit-parallel processing is required,

where multiple data-words are operated upon simultaneously. One important issue

here is the provision of the ISE with the operands. We approached this situation by

implementing a complete F2163 multiplier with minimum possible area.

A or C

B

Multiplier

Memory

load/

store

Registers

RAM

FU

control

ISE

uP control 

signals

Figure 4.2: ISE Interface and Structure

Figure 4.2 shows the general layout of functional unit (FU) of the ISE, we simulate

on the FPSLIC device. Four processor registers are initially loaded with the memory

addresses of the two operands A and B. The ISE is then initiated by a control signal

to the FU control (FUC) along with the first memory address byte. In our proof-of-

concept implementation, this behavior is achieved by sending the byte over the data-

lines from the processor to the FPGA, and confirming its reception through interrupt-

lines from the FPGA to the processor. After the last memory address byte is received,

the FUC initiates the memory load/store circuit within the ISE to load both the

21-byte operands directly from the SRAM in 21-cycles each. Then, the FUC runs

the multiplier for 163-cycles to get the result C. During this period, the processor

loads the memory address of C, sends it to the FPGA, and goes into polling state for

the final interrupt from the FPGA. After the result C is obtained, the ISE stores it

back directly in the memory in another 21-cycles and then sends the final interrupt,

signalling the completion of the multiplication. This method of handshaking leads to

extra control overheads, which can be reduced by having a more tightly coupled ISE to

the processor without requiring confirmation interrupts. During the idle polling state,

the processor could also be used in other computational work which is independent of

the multiplication result. Memory access conflicts during such computation between

the processor and the ISE is avoided by using a dual ported SRAM.
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We implement different levels of ISE on our implementation platform as a proof-

of-concept and to get a fairly accurate idea of the speed-up it can produce.

4.5.1 8-by-8 Bit-Parallel Multiplier

Most 8-bit micro-controllers, including AVR, have an 8-by-8 bit integrated integer

multiplication instruction. We implement here an analogous 8-by-8 bit polynomial

multiplier which is much more simpler and smaller in size, as it does not involve carries

as in the integer multiplier. We implement a parallel multiplier which executes in 1

clock cycle. It can be interfaced directly to the registers to obtain a 1 cycle multiplier

instruction. It has an area requirement of 64 AND and 49 XOR gates. On our test

platform, the multiplier requires a total of 4 cycles due to control overheads. Using

this multiplier, speed-up of the point multiplication is almost doubled as shown in

Table 4.3.

4.5.2 163-by-163 Bit-Serial Multiplier

Although, 8-by-8 bit polynomial multiplier gives considerable speed-up, the bottleneck

is the frequent memory access to the same set of bytes. This is caused due to the fact

that the 31 registers available in the AVR processor are not enough to store the two

long 21 byte operands. A more efficient method and a logical next step was to perform

a 163-by-163 multiplication on the extension.

A bit-serial F2m hardware multiplier is the most simple solution which requires the

least area. The core of the multiplier is as shown in Fig. 4.3, where reduction circuit

is hardwired. A modification for implementing a more general reduction polynomial

or variable size multiplication is discussed in Section 4.5.4. We implement a Least

Significant Bit (LSB) first multiplier as it has a smaller critical path delay. Our bit-

serial multiplier requires 163 ANDs, 167 XORs and 489 FFs (Flip-Flops). A 163-by-163

multiplication is computed in 163 clocks, excluding data input and output. In our

implementation, control and memory access overheads lead to a total execution time

of 313 clocks, beginning from the processor sending the memory addresses of A, B

and C to the final result stored in C. Since the multiplier is much faster than the

squaring in software, we use the multiplier also for squaring by loading A = B. The

results (in Tables 4.2 and 4.3) show a drastic speed-up using this multiplier. It should

be noted that the control overhead can be considerably reduced when the hardware

is more tightly coupled within the processor, e.g., in an ASIC implementation of the
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processor with the proposed extension.

Accumulator

Ax mod F(x)

Shift Register

b162 b1 b0

163B

a162 a1 a0

163A

+
+ +

c162 c1 c0

xxx

163

C =AB mod F(x)

Figure 4.3: Bit-Serial LSB Multiplier

4.5.3 163-by-163 Digit Serial Multiplier

Further trade-off between area and speed is possible using a digit-serial multiplier. As

previously described in Section 2.4.1, compared to the bit-serial multiplier where only

one bit of operand B is used in each iteration, in a digit-serial multiplier, multiple

bits (equal to the digit-size) of B are multiplied to the operand A in each iteration

(Fig. 4.4). We use a digit size of 4 as it gives a good speed-up without drastically

increasing the area requirements. The total area for multiplier is 652 ANDs, 684 XORs

and 492 FFs. A 163-by-163 multiplication with reduction requires 42 clocks. In our

implementation, the control overheads leads to a total of 193 clocks.

Our implementation gives estimates of the speed-up possible when building ISEs

in small embedded 8-bit processors. In a real ISE, where the hardware is more tightly

coupled, the control signal overhead can be considerably reduced and a better efficiency

is possible.
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Accumulator

Ax
4
 mod F(x)

Shift Register

b160 b4 b0

163B

a162 a1 a0

163A

c167 c1 c0

xxx

168

C =AB mod F(x)

b159 b7 b3

163

168

   mod F(x)

163

Figure 4.4: Digit-4 Serial LSD Multiplier

4.5.4 A Flexible Multiplier

Flexibility of crypto algorithm parameters, especially operand lengths, can be very

attractive because of the need to alter them when deemed insecure in the future, or

for providing compatibility in different applications. Considering the high-volume of

pervasive devices, replacing each hardware component seems improbable. We discuss

here how the multiplier can be made more flexible to satisfy these needs.

Support of a generic reduction polynomial with a maximum degree of m of the form

F (x) = xm +G(x) = xm +
∑m−1

i=0 gix
i, requires storage of the reduction coefficients and

additional circuitry as shown in Fig. 4.5 (a similar implementation for a digit-serial

multiplier is straightforward). The reduction polynomial needs to be initialized only

once at the beginning of the point multiplication. Thus the total number of clocks

required for multiplication remains almost the same.
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a162 a1 a0

x

g1

x

x

g0

x

g162

x

Ax mod F(x)

163A F 163

Figure 4.5: Bit-serial reduction circuit

Different bit-length multipliers, for different key-length ECC, can also be supported

using this structure. We show as an example, how the 163-bit multiplier could be also

used to multiply two 113-bit operands A′ and B′, with 113-bit reduction polynomial

G′.
The operands A, B and the reduction polynomial are initially loaded as

A = (a′112...a
′
1a
′
00...0) = A′x50

B = (0...0b′112...b
′
1b
′
0) = B′

G = (g′112...g
′
1g
′
00...0) = G′x50

If C ′ = A′ ·B′ mod F ′(x) then

A ·B mod F (x) = A′x50 ·B′ mod (F ′(x)x50) = C ′x50

Thus the result is stored in the most-significant bits of operand C after 113 clock

cycles. The memory load/store circuit and the FU control unit takes care to load the

operands appropriately, and to fetch the result after the required number of clocks

from the multiplier to store it back appropriately in memory.

4.6 Summary

In this work, we showed that huge performance gains are possible in small 8-bit pro-

cessors by introducing small amounts of extra hardware. The results show 1–2 orders

of magnitude increase in speed-up for the ECC implementation. The hardware costs

are in the range of 250–500 extra CLBs. Also the code size and data RAM usage is
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4.6 Summary

decreased. The performance gain due to the ISE can be used to reduce the total power

consumption of the devices by running the whole device at a lower frequency, which can

be a major benefit in wireless pervasive applications. The proof-of-concept implemen-

tation can also be used directly as a reconfigurable ISE. The fact that the public-key

exchange is done only once in the initial phase of the communication, can be used to

reconfigure the FPGA at run-time for an ISE suitable for a different application (like

signal processing) running later on the device. Thus two different sets of ISEs can be

run on the same constrained device, accelerating both applications without increasing

the total hardware cost.
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Chapter 5

Hardware/Software Co-design:
Extensions for a 32-bit Processor

We present here results of the collaborative work with Johann Großschädl, IAIK, Graz

University of Technology, Austria, part of which was published in [25].

5.1 Motivation and Outline

Public-key cryptosystems are becoming an increasingly important workload for em-

bedded processors, driven by the need for security and privacy of communication. In

the past, embedded systems with poor processing capabilities (e.g., smart cards) used

dedicated hardware (co-processors) to offload the heavy computational demands of

cryptographic algorithms from the host processor. However, systems which use fixed-

function hardware for cryptography have significant drawbacks: they are not able to

respond to advances in cryptanalysis, or to changes in emerging standards.

In this chapter, we investigate the potential of architectural enhancements and

instruction set extensions for fast yet flexible implementations of arithmetic for ECC

on a 32-bit embedded processor. Extending a general-purpose architecture with special

instructions for performance-critical arithmetic operations, allows us to combine full

software flexibility with the efficiency of a hardware solution. We opted for using OEFs

in our work, since they have some specific advantages over other types of finite fields.

This chapter is organized as follows: First, some related work on the use of ex-

tensions for public-key cryptography is mentioned in Section 5.2. We use the MIPS32

(described in Section 5.3) as the base architecture and analyze in Section 5.4, how

the arithmetic algorithms can be efficiently implemented on MIPS32 processors, and

which functionality is required to achieve peak performance. Moreover, we also identify
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disadvantageous properties of the MIPS32 architecture in this context. Different ar-

chitectural extensions to support OEF arithmetic in an efficient manner are discussed

in Section 5.5. The main goal was to design instruction set extensions (ISEs) that can

be easily integrated into MIPS32, and entail only minor modifications to the processor

core.

5.2 Related work

Most previous work is concerned with architectural enhancements and ISE for multiple-

precision modular multiplication, that are needed for the “traditional” cryptosystems

like RSA [65, 68, 24]. A number of microprocessor vendors have extended their archi-

tectures with special instructions targeting cryptographic applications. For instance,

the instruction set of the IA-64 architecture, jointly developed by Intel and Hewlett-

Packard, has been optimized to address the requirements of long integer arithmetic

[37]. The IA-64 provides an integer multiply-and-add instruction (XMA), which takes

three 64-bit operands (a, b, c) and produces the result a× b + c. Either the lower

or the upper 64 bits of the result are written to a destination register, depending on

whether XMA.LU or XMA.HU is executed. Another example for a cryptography-oriented

ISA enhancement is the UMAAL instruction, which has been added to version 6 of the

ARM architecture (ARMv6) [3]. The UMAAL instruction executes a special multiply-

accumulate operation of the form a× b + c + d, interpreting the operands as unsigned

32-bit integers, and stores the 64-bit result in two general-purpose registers. This oper-

ation is carried out in the inner loop of many algorithms for multiple-precision modular

arithmetic, e.g., Montgomery multiplication [45].

Previous work on architectural enhancements dealing with specific instructions for

use in ECC have only been considered on prime fields Fp and binary extension fields

F2m . The work in [24], demonstrates the benefits of a combined hardware/software ap-

proach to implement arithmetic in binary fields F2m . Efficient algorithms for multiple-

precision multiplication, squaring, and reduction of binary polynomials are presented,

assuming the processor’s instruction set includes the MULGF2 instruction (which per-

forms a word-level multiplication of polynomials over F2). In [20], a datapath-scalable

minimalist cryptographic processor architecture for mobile devices, PAX is introduced.

PAX consists of a simple RISC-like base instruction set, augmented by a few low-cost

instructions for cryptographic processing. These special instructions assist a wide

range of both secret-key and public-key cryptosystems, including systems that use
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5.3 The MIPS32 architecture

binary extension fields F2mas underlying algebraic structure.

The Domain-Specific Reconfigurable Cryptographic Processor (DSRCP) [22] is loosely

related to our work. Optimized for energy efficiency, the DSRCP provides an instruc-

tion set for a domain of arithmetic functions over prime fields Fp, binary extension

fields F2m , and elliptic curves built upon the latter. However, from the perspective of

design methodology, the DSRCP represents a “classical” application-specific instruc-

tion set processor (ASIP) developed from scratch, i.e., it is not an extension of an

existing architecture.

In the present work, we introduce instruction set extensions to support arithmetic

in OEFs.

5.3 The MIPS32 architecture

The MIPS32 architecture is a superset of the older MIPS I and MIPS II instruction set

architectures and incorporates new instructions for standardized DSP operations like

“multiply-and-add” (MADD) [57]. MIPS32 uses a load/store data model with 32 general-

purpose registers of 32 bits each. The fixed-length, regularly encoded instruction set

includes the usual arithmetic/logical instructions, load and store instructions, jump

and branch instructions, as well as co-processor instructions. All branches in MIPS32

have an architectural delay of one instruction. The instruction immediately following

a branch (i.e., the instruction in the so-called branch delay slot) is always executed,

regardless of whether the branch is taken or not.

Memory
(Cache)

Registers IU

rs rt

MDU

HI LO
hi part lo partrd

load

store

Figure 5.1: 4Km datapath with integer unit (IU) and multiply/divide unit (MDU)

The MIPS32 architecture defines that the result of a multiply (MULT) or multiply-

and-add (MADD) operation is to be placed in two special result/accumulation regis-

ters, referenced by the names HI and LO (see Figure 5.1). Using the “move-from-HI”

(MFHI) and “move-from-LO” (MFLO) instructions, these values can be transferred to the
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general-purpose register file. The MADD instruction multiplies two 32-bit operands and

adds the product to the 64-bit concatenated values in the HI/LO register pair. Then,

the resulting value is written back to the HI and LO registers. MIPS32 also provides a

MADDU (“multiply-and-add unsigned”) instruction, which performs essentially the same

operation as MADD, but interprets the operands as unsigned integers.

The 4Km processor core is a high-performance implementation of the MIPS32 in-

struction set [56]. Key features of the 4Km are a five-stage, single-issue pipeline with

branch control, and a fast multiply/divide unit (MDU) with a (32× 16)-bit multiplier.

Most instructions occupy the execute stage of the pipeline only for a single cycle. How-

ever, load operations require an extra cycle to complete before they exit the pipeline.

The 4Km interlocks the pipeline when the instruction immediately following the load

instruction uses the contents of the loaded register. Optimized MIPS32 compilers try

to fill load delay slots with useful instructions.

The MDU works autonomously, which means that the 4Km has a separate pipeline

for multiply, multiply-and-add, and divide operations (see Figure 5.1). This pipeline

operates in parallel with the integer unit (IU) pipeline and does not necessarily stall

when the IU pipeline stalls. Note that a (32× 32)-bit multiply operation passes twice

through the multiplier, i.e., it has a latency of two cycles. However, the 4Km allows to

issue an IU instruction during the latency period of the multiply operation, provided

that the IU instruction does not depend on the result of the multiply. This “paral-

lelism” is possible since the MULT instruction does not occupy the ports of the register

file in the second cycle of its execution. Therefore, long-running (multi-cycle) MDU

operations, such as a (32× 32)-bit multiply or a divide, can be partially masked by

other IU instructions.

5.4 Implementation aspects on the MIPS32 processor

In the following section, we discuss the choice of parameters for OEF and the limitations

of the MIPS32 architecture with respect to the efficient implementation of the OEF

arithmetic. Since the word-size of the processor is 32, it is obvious to use an OEF

defined by a 32-bit pseudo-Mersenne prime. The extension degree is chosen such that

the reduction polynomial P (t) exists, and an appropriate security level can be achieved.

A typical example is the OEF with p = 232 − 5 and m = 5, which has an order of 160

bits.

Multiplication is by far the most important field operation and has a significant
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impact on the overall performance of elliptic curve cryptosystems defined over OEFs.

This is the case for both the affine and projective coordinates, since the efficiency

of the Itoh-Tsujii inversion depends heavily on fast extension field multiplication (see

Section 2.5.1). The multiplication of two polynomials A,B ∈ Fpm (as previously stated

in Section 2.5.1) is performed by m2 multiplications of the corresponding 32-bit co-

efficients ai, bj ∈ Fpm . Though the MADDU instruction facilitates the “multiply-and-

accumulate” strategy for polynomial multiplication, the 64-bit precision of the re-

sult/accumulation registers HI and LO is a substantial drawback in this context. The

coefficient-products ai · bj can be up to 64 bits long, which means that a cumula-

tive sum of several 64-bit products exceeds the 64-bit precision of the HI/LO register

pair. Therefore, the MADDU instruction cannot be used to implement the “multiply-

and-accumulate” strategy for polynomial multiplication, simply because the addition

of 64-bit coefficient-products to a running sum stored in the HI/LO registers would

cause an overflow and loss of precision.

A straightforward way to overcome this problem is to use a smaller pseudo-Mersenne

prime p, e.g., a 28-bit prime instead of a 32-bit one, so that the accumulation of m

coefficient-products will not overflow the 64-bit HI/LO register pair. However, when

the bit-length of p is less than 32 bits, we need a larger extension degree m in order to

obtain an OEF of sufficient size, e.g., m = 6 instead of 5. The value of m determines

the number of coefficient-products that have to be computed when multiplying two ele-

ments in Fpm . For instance, an extension degree of m = 6 requires to carry out m2 = 36

coefficient multiplications (excluding the extension field reduction), which represents

an increase of 44% over the 25 coefficient multiplications needed when m = 5.

Choosing a smaller pseudo-Mersenne prime, p = 2n − c with n < 32, entails a sec-

ond disadvantage. The reduction of a sum of coefficient-products, according to Algo-

rithm 2.9, requires the sum z to be of the form z = zH · 2n + zL, whereby zL represents

the n least significant bits of z and zH includes all the remaining (i.e., higher) bits

of z. Extracting the integers zH and zL from z is trivial when n is the same as the

word size of the processor, i.e., n = 32, since in this case no bit-manipulations have to

be performed. However, when n < 32, we are forced to carry out shifts of bits within

words in order to obtain the higher part zH . In addition to these bit manipulations,

a number of data transfers between general-purpose registers and the accumulation

registers HI, LO are required before we can do the actual reduction by computation of

zH · c + zL (see line 5 of Algorithm 2.9).

The number of loop iterations in Algorithm 2.9, depends on the magnitude of

z. It can be shown that the loop iterates at most twice when z is a 2n-bit integer,
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with z < p2 (see [34]). Larger values of z may necessitate additional iterations. In

general, any iteration of the loop decreases the length of z by n− dlog2(c)e bits. The

“multiply-and-accumulate” strategy for polynomial multiplication requires reduction

of a cumulative sum of up to m coefficient-products (see Figure 2.2), which means that

the bit-length of the quantity to reduce is 2n + dlog2(m)e, provided that all coefficients

ai, bj are at most n bits long. As a consequence, Algorithm 2.9 may need to perform

more than two iterations. In our case, assuming that p is a 32-bit PM prime, i.e.,

p = 232 − c, and c is no longer than 16 bits due to Definition 2.1. If we use the

extension degree of m = 5, the cumulative sum of m coefficient-products is up to 67

bits long. We write this sum as z = zH · 232 + zL, whereby zH represents the 35 most

significant bits and zL the 32 least significant bits of z, respectively. The first iteration

of the while-loop reduces the length of z from 67 bits to 51 bits or even less. After the

third iteration, the number z is either fully reduced or at most 33 bits long, so that a

final subtraction of p is sufficient to guarantee z < p.

It can be formally proven that for n = 32, log2(c) ≤ 16, and reasonable extension

degrees m, at most three iterations of the while-loop (i.e., three multiplications by c)

and at most one subtraction of p are necessary to bring the result within the desired

range of [ 0, p− 1]. We refer the interested reader to [34, 80] for a more detailed

treatment.

5.5 Proposed extensions to MIPS32

As mentioned before, the MADDU instruction can be used to implement polynomial

multiplication according to the “multiply-and-accumulate” strategy, provided that the

bit-length of the coefficient is less than 32. However, this constraint competes with the

optimal use of the MADDU instruction, and the attempt to exploit the full precision of the

processor’s registers and data-path, respectively. The performance of the multiplication

in Fpm , p = 2n − c, is mainly determined by the processor’s ability to calculate a sum

of up to m coefficient-products, and the ability to perform the reduction of this sum

modulo p in an efficient manner. Some properties of the MIPS32 architecture — such

as the 64-bit precision of the concatenated result/accumulation registers HI and LO —

are clearly disadvantageous for the implementation of OEF arithmetic.
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Table 5.1: Format and description of useful instructions for OEF arithmetic

Format Description Operation

MADDU rs, rt Multiply and ADD Unsigned (HI /LO) ← (HI /LO) + rs × rt

MADDH rs Multiply and ADD HI register (HI /LO) ← HI × rs + LO

SUBC rs Subtract Conditionally from HI/LO if (HI 6= 0 ) then

(HI /LO) ← (HI /LO)− rs

5.5.1 Multiply/accumulate unit with a 72-bit accumulator

Efficient OEF arithmetic requires exploiting the full 32-bit precision of the registers,

and hence the prime p should also have a length of 32 bits. An implementation of

polynomial multiplication, with 32-bit coefficients, would greatly profit from a multi-

ply/accumulate (MAC) unit with a “wide” accumulator, so that a certain number of

64-bit coefficient-products can be summed up without overflow and loss of precision.

For instance, extending the accumulator by eight guard bits, allows accumulation of

up to 256 coefficient-products, which is sufficient for OEFs with an extension degree

of m ≤ 256. However, when we have a 72-bit accumulator, we also need to extend the

precision of the HI register from 32 to 40 bits, so that the HI/LO register pair is able to

accommodate 72 bits altogether. The extra hardware cost is negligible, and a slightly

longer critical path in the MAC unit’s final adder is no significant problem for most

applications.

Multiplying two polynomials A,B ∈ Fpm , according to the product scanning tech-

nique, comprises m2 multiplications of 32-bit coefficients and the reduction of 2m− 1

column sums modulo p (without considering the extension field reduction). The calcu-

lation of the column sums depicted in Figure 2.2 can be conveniently performed with

the MADDU instruction, since the wide accumulator and the 40-bit HI register prevent

overflows. After the summation of all coefficient-products ai · bj of a column, the 32

least significant bits of the column sum are located in the LO register, and the (up

to 40) higher bits reside in register HI. Therefore, the content of register HI and LO

correspond to the quantities zH and zL of Algorithm 2.9, since p is a 32-bit prime, i.e.,

n = 32.
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5.5.2 Custom instructions

Besides coefficient multiplications, also the subfield reductions can contribute signifi-

cantly to the overall execution time of OEF arithmetic operations. This motivated us

to design two custom instructions for efficient reduction modulo a PM prime, similar

to Algorithm 2.9. Our first custom instruction is named MADDH, and multiplies the

content of register HI by the content of a source register rs, adds the value of register

LO to the product, and stores the result in the HI/LO register pair (see Table 5.1). This

is exactly the operation carried out at line 5 of Algorithm 2.9. The MADDH instruction

interprets all operands as unsigned integers and shows therefore some similarities with

the MADDU instruction. However, it must be considered that the extended precision of

the HI register requires a larger multiplier, e.g., a (40× 16)-bit multiplier instead of the

conventional (32× 16)-bit variant. The design and implementation of a (40× 16)-bit

multiplier able to execute the MADDH instruction and all native MIPS32 multiply and

multiply-and-add instructions is straightforward.

Our second custom instruction, SUBC, performs a conditional subtraction, whereby

the minuend is formed by the concatenated value of the HI/LO register pair, and

the subtrahend is given by the value of a source register rs (see Table 5.1). The

subtraction is only carried out when the HI register holds a non-zero value, otherwise

no operation is performed. SUBC writes its result back to the HI/LO registers. We

can use this instruction to realize an operation similar to the one specified at line 7

of Algorithm 2.9. However, the SUBC instruction uses the content of the HI register

to decide whether or not to carry out the subtraction, i.e., it makes a comparison to

2n instead of p = 2n − c. This comparison is easier to implement, but may entail a

not fully reduced result even though it will always fit into a single register. In general,

when performing calculations modulo p, it is not necessary that the result of a reduction

operation is always the least non-negative residue modulo p, which means that we can

continue the calculations with an incompletely reduced result.

5.5.3 Implementation details and performance evaluation

In the following, we demonstrate how OEF arithmetic can be implemented on an

extended MIPS32 processor, assuming that the two custom instructions MADDH and

SUBC are available. We developed a functional, cycle-accurate SystemC model of a

MIPS32 4Km core in order to verify the correctness of the arithmetic algorithms and

to estimate their execution times. Our model is based on a simple, single-issue pipeline

and implements a subset of the MIPS32 ISA, along with the two custom instructions
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label: LW $t0, 0($t1) # load A[i] into $t0

LW $t2, 0($t3) # load B[j] into $t2

ADDIU $t1, $t1, 4 # increment address in $t1 by 4

MADDU $t0, $t2 # (HI|LO)=(HI|LO)+($t0*$t2)

BNE $t3, $t4, label # branch if $t3!=$t4

ADDIU $t3, $t3, -4 # decrement address in $t3 by 4

MADDH $t5 # (HI|LO)=(HI*$t5)+LO

MADDH $t5 # (HI|LO)=(HI*$t5)+LO

MADDH $t5 # (HI|LO)=(HI*$t5)+LO

SUBC $t6 # if (HI!=0) then (HI|LO)=(HI|LO)-$t6

Figure 5.2: Calculation of a column sum and subfield reduction

MADDH and SUBC. While load and branch delays are considered in our model, we did

not simulate the impact of cache misses, i.e., we assumed a perfect cache system.

The code snippet, depicted in Figure 5.2, calculates a column sum of coefficient-

products ai · bj and performs a subfield reduction, i.e., the column sum is reduced

modulo a PM prime p (see Section 5.4). For e.g., the instruction sequence can be

used to calculate the coefficient c3, as illustrated in Figure 2.2, and formally specified

by Equation (2.16). The first six instructions implement a loop that multiplies two

coefficients ai, bj and adds the coefficient-product to a running sum in the HI/LO register

pair. After termination of the loop, the column sum is reduced modulo p with the help

of the last four instructions. The polynomials A(t), B(t) are stored in arrays of unsigned

32-bit integers, which are denoted as A and B in Figure 5.2. Before entering the loop,

register $t1 and $t3 are initialized with the address of a0 and b3, respectively. Two

ADDIU instructions, which perform simple pointer arithmetic, are used to fill a load

delay slot and the branch delay slot. Register $t3 holds the current address of bj and

is decremented by 4 each time the loop repeats, whereas the pointer to the coefficient

ai (stored in register $t1) is incremented by 4. The loop terminates when the pointer

to bj reaches the address of b0, which is stored in $t4.

Once the column sum has been formed, it must be reduced modulo p in order to

obtain the coefficient c3 as final result. The last four instructions of the code snip-
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pet implement the reduction modulo a 32-bit PM prime p = 2n − c similar to Algo-

rithm 2.9. As explained in Section 5.4, at most three multiplications by c and at most

one subtraction of p are necessary to guarantee that the result is either fully reduced

or at most 32 bits long. The MADDH instructions implement exactly the operation at

line 5 of Algorithm 2.9, provided that register $t5 holds the offset c. At last, the SUBC

instruction performs the final subtraction when p is stored in $t6.

The execution time of the instruction sequence depicted in Figure 5.2, depends

on the implementation of the multiplier. An extended MIPS32 processor, with a

(40× 16)-bit multiplier and a 72-bit accumulator, executes an iteration of the loop in

six clock cycles, provided that no cache misses occur. The MADDU instruction writes

its result to the HI/LO register pair (see Figure 5.1), and does not occupy the regis-

ter file’s read ports and write port during the second clock cycle. Therefore, other

arithmetic/logical instructions, such as the BNE instruction in Figure 5.2, can be exe-

cuted during the latency period of the MADDU operation. On the other hand, the MADDH

instructions requires only a single clock cycle to produce its result on a (40× 16)-bit

multiplier, provided that the multiplier implements an “early termination” mechanism.

According to Definition 2.1, the offset c is at most 16 bits long when p is a 32-bit PM

prime, which means that a multiplication by c requires only one pass through the

multiplier. The operation performed by the SUBC instruction is very simple, and thus

it can be easily executed in one clock cycle. In summary, the four instructions for a

subfield reduction require only four clock cycles altogether.

Experimental results

We implemented the arithmetic operations for a 160-bit OEF defined by the following

parameters: p = 232 − 5, m = 5, and x(t) = t5 − 2. Our simulations show that a full

OEF multiplication (including extension field reduction) executes in 406 clock cycles,

which is almost twice as fast as a “conventional” software implementation that uses only

native MIPS32 instructions. The OEF squaring executes in 345 cycles on our extended

MIPS32 model. These timings were achieved without loop unrolling and without

special optimizations like Karatsuba’s algorithm. An elliptic curve scalar multiplication

k ·P can be performed in 940k clock cycles when projective coordinates are used in

combination with the binary NAF method (see [34] for details). On the other hand,

we were not able to implement the scalar multiplication in less than 1.75M cycles on

a standard MIPS32 processor. In summary, the proposed architectural enhancements

achieve a speed-up factor of 1.8.
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Reduction modulo PM primes of less than 32 bits

In order to ensure compatibility with other systems, it may be necessary to handle

PM primes with a bit-length of less than 32. The proposed extensions are also use-

ful for shorter primes, e.g., the 31-bit prime p = 231 − 1. This is possible by per-

forming all subfield reduction operations modulo a 32-bit near-prime q = d · p in-

stead of the original prime p. A near-prime is a small multiple of a prime, e.g.,

q = 2 · (231 − 1) = 232 − 2. All residues obtained through reduction by q are congru-

ent to the residues obtained through reduction by the “original” prime p. Therefore,

we can carry out a full elliptic curve scalar multiplication with a 32-bit near-prime

q instead of p, using the same software routines. However, at the very end of the

calculation, an extra reduction of the coefficients modulo p is necessary.

5.6 Summary

In this work, we proposed simple extensions for efficient OEF arithmetic on MIPS32

processors. A wide accumulator allows a convenient calculation of column sums with

the help of the MADDU instruction, whereas a (40× 16)-bit multiplier along with the

two custom instructions MADDH and SUBC makes it possible to perform a reduction

modulo a PM prime in only four clock cycles. Our simulations show that an extended

MIPS32 processor is able to execute a multiplication, in a 160-bit OEF, in only 406

clock cycles, which is almost twice as fast as a conventional software implementation

with native MIPS32 instructions. A full elliptic curve scalar multiplication over a

160-bit OEF requires approximately 940k clock cycles. The proposed extensions are

simple to integrate into a MIPS32 core since the required modifications/adaptions are

restricted to the instruction decoder and the multiply/divide unit (MDU). A fully

parallel (i.e., single-cycle) multiplier is not necessary to reach peak performance. The

extra hardware cost for a (40× 16)-bit multiplier is marginal when we assume that the

“original” processor is equipped with a (32× 16)-bit multiplier.
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Chapter 6

Hardware Design:
Optimal Digit Multipliers for F2m

Parts of this work have been published in [49] and to be published in [50]

6.1 Motivation and Outline

Hardware based implementations of curve based cryptography, especially Elliptic Curve

Cryptography (ECC), are becoming increasingly popular. A comprehensive overview

on hardware implementations of RSA and ECC can be found in [10]. Characteris-

tic two fields F2m are often chosen for hardware realizations as they are well suited

for hardware implementation due to their “carry-free” arithmetic. The over-all time

and area complexity of ECC and HECC implementations heavily depends on the F2m

multiplier architecture used. Most commonly cited implementations of ECC over char-

acteristic two fields in literature [30, 63] use digit multipliers with digit sizes of power of

2. Using a digit multiplier, allows implementations to do a tradeoff between speed and

area, enabling fast implementations tuned to the available resources of the hardware.

In this chapter we present different architectures like Single Accumulator Multiplier

(SAM), Double Accumulator Multiplier (DAM) and N-Accumulator Multiplier (NAM)

for the implementation of the digit multiplier. The naming is based on the number

of internal accumulators used to store the intermediate result. We use these extra

accumulators to reduce the critical path delay of the multipliers and hence increase

the maximum operating frequency. We also give the necessary conditions that need to

be satisfied by the irreducible polynomial for such implementations. We find that all

the standardized NIST polynomials satisfy the required conditions for implementing

these techniques. Evaluating the multiplication speed and the area-time product for
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6.2 Background on Digit-Serial Multipliers.

the different architectures leads to the optimum digit sizes for an implementation.

These results show that the cryptosystems can be implemented more efficiently than

had been done in the past. E.g., for NIST B-163 [60], the most optimum architectures

are SAM with digit-size=3 and DAM with digit-size=6, giving the developer a good

choice between area and time.

The remaining of the chapter is organized as follows. Section 6.2 gives an overview

of the conditions for choosing efficient reduction polynomials. Section 6.3 introduces

our different architectures for the Digit-Serial multiplier. Section 6.4 summarizes and

evaluates optimum digit sizes for the different architectures.

6.2 Background on Digit-Serial Multipliers.

Finite field multiplication in F2m of two elements A and B to obtain a result C =

AB mod p(α) (where p(α) is the irreducible polynomial), can be done in various ways

based on the available resources. As described in Section 2.4.1, bit-serial multipliers

processes the coefficients of multiplicand A in parallel, while the coefficients of the

multiplier B are processed in a serial manner. Hence, these multipliers are area-efficient

and suitable for low-speed applications.

Reduction mod p(α) for bit-serial multipliers

In the Least Significant Bit (LSB) multiplier (similar to shift-and-add MSB Algo-

rithm 2.6), a quantity of the form Wα, where W (α) =
∑m−1

i=0 wiα
i ∈ F2m , has to be

reduced modp(α). Multiplying W by α, we obtain

Wα =
m−1∑
i=0

wiα
i+1 = wm−1α

m +
m−2∑
i=0

wiα
i+1 (6.1)

Using the property of the reduction polynomial p(α) = 0 mod p(α), we obtain:

αm =
m−1∑
i=0

piα
i mod p(α) (6.2)

Substituting for αm and re-writing the index of the second summation in Equation (6.1),

Wα mod p(α) can then be calculated as follows:

Wα mod p(α) =
m−1∑
i=0

(piwm−1)α
i +

m−1∑
i=1

wiα
i = (p0wm−1)+

m−1∑
i=1

(wi−1 +piwm−1)α
i (6.3)

where all coefficient arithmetic is done modulo 2.
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Reduction mod p(α) for Digit Multipliers

Digit Multipliers are a trade-off between area and speed. In a digit-serial multiplier

(see Section 2.4.1) multiple bits (equal to the digit-size) of B are multiplied to the

operand A in each iteration In the Least Significant Digit (LSD) multiplier, products

of the form WαD occurs (as seen in Step 4 of Algorithm 2.8) which have to be reduced

mod p(α). As in the LSB multiplier case, one can derive equations for the modular

reduction for general irreducible polynomials p(α). However, it is more interesting to

search for polynomials that minimize the complexity of the reduction operation. For

determining optimum irreducible polynomials we use two theorems from [76].

Theorem 6.1. Assume that the irreducible polynomial is of the form p(α) = αm +

pkα
k +

∑k−1
j=0 pjα

j, with k < m. For t ≤ m − 1 − k, αm+t can be reduced to a degree

less than m in one step with the following equation:

αm+t mod p(α) = pkα
k+t + (

k−1∑
j=0

pjα
j+t) (6.4)

Proof. The result follows from Equation (2.7), the assumed form of p(α), and the fact

that for αk+t where k + t ≤ m− 1, no modular reduction is necessary.

Theorem 6.2. For digit multipliers with digit-element size D, when D ≤ m− k, the

intermediate results in Algorithm 2.8 (Step 4 and Step 6) can be reduced to degree less

than m in one step.

Proof. Refer [76].

Theorems 6.1 and 6.2 implicitly say that for a given irreducible polynomial p(α) =

αm + pkα
k +

∑k−1
j=0 pjα

j, the digit-element size D has to be chosen based on the value

of k, the degree of the second highest coefficient in the irreducible polynomial.

6.3 Architecture Options for LSD

In this section, we provide different architectural possibilities for the implementation of

the LSD multiplier. The architectures are named based on the number of accumulators

present in the multiplier.
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6.3.1 Single Accumulator Multiplier (SAM)

The Single Accumulator Multiplier (SAM) is similar to the Song/Parhi multiplier ar-

chitecture as introduced in [76]. This kind of architecture is most commonly used in

cryptographic hardware implementations [30, 63]. This architecture consists of three

main components as shown in the Fig. 6.1.

Accumulator

A!
5
 mod p(!)

Shift Register

b160 b5 b0

163B

a162 a1 a0

163A

c166 c1 c0

+++

167

C =AB mod p(!)

b159 b9 b4

163

167

   mod p(!)

163

1

2

3

Multiplier core

Main Reduction

Multiplier Core

Final Reduction

Figure 6.1: LSD-Single Accumulator Multiplier Architecture (D = 5) for F2163

¥ The main reduction circuit to shift A left by D positions and to reduce the result

modp(α) (Step 4, Algorithm 2.8).

¥ The multiplier core which computes the intermediate C and stores it in the

accumulator (Step 3, Algorithm 2.8).

¥ The final reduction circuit to reduce the contents in the accumulator to get the

final result C (Step 6, Algorithm 2.8).
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All the components run in parallel, requiring one clock for each step, and the critical

path of the whole multiplier normally depends on the critical path of the multiplier

core.

We give here a further analysis of the area requirements and the critical path of

the different components of the multiplier. In the figures, we will denote an AND gate

with a filled dot, and elements to be XORed by a vertical line over them. The number

of XOR gates and the critical path is based on the binary tree structure that has to

be built to XOR the required elements. For n elements, the number of XOR gates

required is n − 1 and the critical path delay comes out to be the binary tree depth

dlog2 ne. We calculate the critical path as a function of the delay of one XOR gate

(∆XOR), and for one AND gate (∆AND). This allows our analysis to be independent

of the cell-technology used for the implementation.

Multiplier core

Acc

m+D-1

A.bDi+0

A.bDi+1

A.bDi+2

A.bDi+3

A.bDi+4

Figure 6.2: SAM multiplier core for D = 5

The multiplier core performs the operation C ← BiA + C (Step 3 Algorithm 2.8).

The implementation of the multiplier core is as shown in Fig. 6.2 for a digit size

D = 5. It consists of ANDing the multiplicand A with each element of the digit of

the multiplier B, XORing the result with the accumulator Acc, and storing it back in

Acc. The multiplier core requires mD AND gates (denoted by the black dots), mD

XOR gates (for XORing the columns denoted by the vertical line plus the XOR gates

for the accumulator) and m + D − 1 Flip-Flops (FF) for accumulating the result C.

It can be seen that the multiplier core has a maximum critical path delay of one

∆AND (since all the ANDings in one column are done in parallel), and a delay for
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XORing D + 1 elements as shown in Fig. 6.2. Thus the total critical path delay of the

multiplier core is ∆AND + dlog2(D + 1)e∆XOR.

Main reduction circuit

D
m

D

k+1

A!
D

D

Figure 6.3: SAM main reduction circuit for D = 5

The main reduction circuit performs the operation A ← AαD mod p(α) (Step 4

Algorithm 2.8) and is implemented as shown in Fig. 6.3. Here, the multiplicand A is

shifted left by the digit-size D, which is equivalent to multiplying by αD. The result

is then reduced with the reduction polynomial by ANDing the higher D elements of

the shifted multiplicand with the reduction polynomial p(α) (shown in the figure as

pointed arrows), and XORing the result. We assume that the reduction polynomial

is chosen according to Theorem 6.2, which allows reduction to be done in one single

step. It can be shown that the critical path delay of the reduction circuit can be at

most equal or less than that for the multiplier core.

The main reduction circuit requires (k + 1) ANDs and k XORs gates for each

reduction element. The number of XOR gates is one less because the last element of

the reduction are XORed to the empty elements in the shifted A. Therefore, a total

of (k + 1)D AND and kD XOR are needed for D digits. Another m Flip-Flops(FF)

are needed to store A, and k + 1 FFs to store the general reduction polynomial.

The critical path of the main reduction circuit (as shown in Fig. 6.3) is one AND

(since the ANDings occur in parallel) and the critical path for summation of the D

reduction components with the original shifted A. Thus the maximum possible critical
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path delay is ∆AND + dlog2(D +1)e∆XOR, which is the same as the critical path delay

of the multiplier core.

Final reduction circuit

m+D-1

D-1

m

Acc

C

Figure 6.4: SAM final reduction circuit for D = 5

The final reduction circuit performs the operation C mod p(α), where C is of size

m + D − 1. It is implemented as shown in Fig. 6.4, which is similar to the main

reduction circuit without any shifting. Here, the most significant (D − 1) elements

are reduced using the reduction polynomial p(α), as shown with the arrows. The area

requirement for this circuit is (k+1)(D−1) AND gates and (k+1)(D−1) XOR gates.

The critical path of the final reduction circuit is ∆AND + dlog2(D)e∆XOR which is less

than that of the main reduction circuit since the degree of the polynomial reduced is

one less (Fig. 6.4).

An r-nomial reduction polynomial satisfying Theorem 6.2, i.e.,
∑k

i=0 pi = (r − 1),

is a special case and hence the critical path is upper-bounded by that obtained for the

general case given here. For a fixed r-nomial reduction polynomial, the area for the

main reduction circuit is (r− 1)D ANDs and (r− 2)D XORs. In addition, we require

m flip flops to store intermediate result A. However, no flip flops are needed to store

the reduction polynomial as it can be hardwired.

Thus, the total area is given in Table 6.4, and our analysis of the optimum digit
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size for critical path and area can be found in Section 5.

6.3.2 Double Accumulator Multiplier (DAM)

The DAM multiplier is the new variant of the SAM multiplier that we propose. They

differ in the multiplier core only. Here, we use two accumulators to store the partial

product C, such that we can reduce the critical path of the multiplier core. The

architecture is shown in the Fig. 6.5. The first accumulator Acc1 adds dD/2e of the

elements, and the other accumulator Acc2 adds the remaining bD/2c elements.

Acc1

Acc2

A.bDi+0

A.bDi+1

A.bDi+2

A.bDi+3

A.bDi+4

Figure 6.5: DAM multiplier core for D = 5

Therefore, the longest critical path in the DAM core is due to the part involving

Acc1. The delay here is one AND gate (since ANDings occur in parallel) and the delay

for accumulating dD/2e + 1 elements. Thus the critical path delay of the multiplier

core is ∆AND + dlog2(dD/2e + 1)e∆XOR. The lower delay has an advantage only if

the critical path of the other components (reduction circuits) also have a smaller or

equal delay. Therefore, the conditions on the reduction polynomial are more stringent

than in the SAM case. We provide here a theorem which shows how to choose such a

reduction polynomial.

Theorem 6.3. Assume an r-nomial irreducible reduction polynomial p(α) = αm +

pkα
k +

∑k−1
i=0 piα

i, with k ≤ m − D and
∑k

i=0 pi = (r − 1). For a digit multiplier

implemented using two accumulators for the multiplication core (DAM), the reduction

polynomial p(α) satisfying the following condition can perform reduction with a smaller

critical path than the multiplier core:

D ≤ (m + 1)/2:
∑D+j

i=0+j pi ≤ dD/2e for 0 ≤ j < m− 2D + 2

D > (m + 1)/2: (r − 1) ≤ dD/2e (6.5)
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Proof. There are two different cases which affect how r can be chosen based on the

number of reduction elements in the XOR tree. The first, we call the overlap case when

there are a maximum of D reducing elements in a column (Fig. 6.6), and the second,

the underlap case, where the maximum number of reducing elements in a column is

less than D (Fig. 6.7).

D

k+1

D

Figure 6.6: Overlap case

D

k+1

k
+
1

D

Figure 6.7: Underlap case

Case 1: Overlap

For the reduction elements to overlap, as shown in the Fig. 6.6, the second highest

degree of the reduction polynomial k, should satisfy the condition (k + 1) ≥ D. We

denote the number of overlapping columns (shown by the shaded lines) as q = k + 1−
(D − 1) ≤ m − 2D + 2. If we now analyze each of these columns in the overlapping

region, it consists of XORing D consecutive coefficients of p(α) with the shifted A. For

e.g., in the rightmost column, it is (
∑D−1

i=0 pi+1), in the next column, it is (
∑D

i=1 pi+1),

and so on. Therefore, the critical path of the circuit is the maximum critical path of

any of these columns and should be less than equal to that of the multiplier core. This

can be expressed as

dlog2(
∑D−1+j

i=0+j pi + 1)e∆XOR ≤ dlog2(dD/2e+ 1)e∆XOR for all 0 ≤ j < m− 2D + 2(6.6)

The result in Equation (6.5) can be easily obtained from this. The implication of the

result is that the sum of any D consecutive coefficients in the reduction polynomial that

lie in the overlap region should be less than equal to dD/2e.
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Case 2: Underlap

The reduction elements underlaps, as shown in the Fig. 6.7, for the remaining possible

values of k, i.e., (k + 1) < D. The number of reduction elements being added in the

underlap region is not more than k. The maximum number of reduction elements that

can be present along any column can be (r− 1) (like the shaded columns in the figure)

since the reduction polynomial is an r-nomial. The condition on the critical path delay

is now

dlog2(
∑k

i=0 pi + 1)e∆XOR ≤ dlog2(dD/2e+ 1)e∆XOR (6.7)

This leads to the condition Equation (6.5) given in the theorem. This implies that

the sum of all the non-zero coefficients (except the highest degree) in the reduction

polynomial should be less than equal to dD/2e.

In the Table 6.1, we provide the possible digit sizes for NIST recommended ECC

reduction polynomials. We see that the only difference in the condition between SAM

and DAM is for 163-bit reduction polynomial where the digit-size D = 2 is not possible.

This shows that NIST curves implemented in the SAM architecture can be easily

converted to the DAM architecture and does not require any extra constraints.

Table 6.1: NIST recommended reduction polynomial for ECC and digit sizes possible

Reduction Polynomial possible D

p(α) SAM DAM

x163 + x7 + x6 + x3 + 1 ≤ 156 ≤ 156 except {2}
x233 + x74 + 1 ≤ 159 ≤ 159

x283 + x12 + x7 + x5 + 1 ≤ 271 ≤ 271

x409 + x87 + 1 ≤ 322 ≤ 322

x571 + x10 + x5 + x2 + 1 ≤ 561 ≤ 561

The addition of an extra accumulator also increases the size of the multiplier.

Therefore, we give an exact count of gates for the new multiplier which allows us to

perform a realistic comparison in terms of area-time product with the other multiplier
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Figure 6.8: DAM main reduction circuit for D = 5

designs. Evaluating the size of the multiplier, the three different components of the

multiplier require the following area:

¥ The multiplier core needs mD AND gates, and for the XORing we have two

accumulators, where accumulator Acc1 needs to XOR dD/2e + 1 elements and

accumulator Acc2 needs to XOR bD/2c+1 elements. Hence, the total XOR-gates

required are dD/2e ∗m + bD/2c ∗m = mD.

We require (m + dD/2e − 1) + (m + bD/2c − 1) = 2m + D − 2 FFs for the two

accumulators. Adding up the two accumulators (which is done with the final

reduction) requires additional m−1 XORs which is the overlapping region of the

two accumulators.

¥ The main reduction circuit (Fig. 6.8) area is the same as discussed for SAM r-

nomial irreducible polynomial: (r − 1)D AND, (r − 2)D XOR gates and m FF

for A.

¥ Final reduction (Fig. 6.9) is done using (r − 1)(D − 1) AND and (r − 1)(D − 1)

XOR gates.

Remark. The addition of the two accumulators is done as part of the final reduction

circuit in the last cycle. Since the final reduction circuit has a critical path smaller

that of the main reduction circuit, the overall critical path is not greater than that of

the multiplier core.
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Figure 6.9: DAM final reduction circuit for D = 5

6.3.3 N-Accumulator Multiplier (NAM)

The N -Accumulator Multiplier is a more generalized version of the DAM. Here, we try

to reduce the critical path further (assuming additional conditions on the reduction

polynomial) by having multiple accumulators calculating the partial sum C.

Assuming n accumulators summing the partial sum, the largest critical path in the

multiplier core is ∆AND + dlog2dD/ne + 1e∆XOR. The accumulators are themselves

XORed using a different tree of critical path dlog2ne∆XOR in an extra clock at the end

(hence the overall latency of the multiplier will be increased by one clock cycle). Care

has to be taken that the final accumulation critical path is not greater than that of

the multiplier core, i.e., dlog2ne ≤ dlog2dD/ne + 1e. This is true when the number of

accumulators is less than equal to the maximum number of elements XORed in any of

the accumulators.

The condition on the reduction polynomial such that the reduction circuit has lesser

critical path delay than the multiplier core is an extension of Theorem 6.3 as given

below.

Theorem 6.4. Assume that r-nomial reduction polynomial p(α) = αm + pkα
k +∑k−1

i=0 piα
i, with k ≤ m − D and

∑k
i=0 pi = (r − 1). For a digit multiplier imple-

mented using n accumulators for the multiplication core (NAM), the reduction poly-

nomial p(α) satisfying the following condition can perform reduction with a smaller
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critical path than the multiplier core:

D ≤ (m + 1)/2:
∑D−1+j

i=0+j pi ≤ dD/ne for 0 ≤ j < m− 2D + 2

D > (m + 1)/2: (r − 1) ≤ dD/ne (6.8)

Proof. Similar to the proof for Theorem 6.3.

For the calculation of the area requirement for NAM, we assume that each of the

accumulator accumulates qi, 1 ≤ i ≤ n elements such that
∑n

i=1 qi = D.

¥ The multiplier core needs mD AND gates and for the XORing we require q1∗m+

q2 ∗m + . . . + qn ∗m = mD XOR gates. The FFs required for the accumulators

are (m + q1 − 1) + (m + q2 − 1) + . . . + (m + qn − 1) = nm + D − n.

¥ The main reduction is same as before (r − 1)D AND, (r − 2)D XOR and m FF

for A.

¥ The final reduction is done using (r − 1)(D − 1) AND and (r − 1)(D − 1) XOR

gates.

¥ For the final accumulation, any two adjacent accumulators have only (m − 1)

elements overlapping. Therefore the total number of XORs for the accumulation

tree is (m − 1)(n − 1). An additional m + D − 1 FF are required to store the

result as unlike the DAM, the addition is done in a separate clock cycle.

6.4 Evaluation of the Multiplier Options

In this section we first summarize the different architecture options. Table 6.2 shows

the latency (in clocks) and the critical path of three different architectures assuming

the digit-sizes satisfy the required conditions. The latency for NAM is greater due an

extra last cycle to sum all the accumulators.

Table 6.4 shows the area requirement for the proposed architectures. As expected

the area is larger for the new architectures, but the area-time product is better in the

DAM and NAM case as will be shown in Section 5.

We evaluated the multipliers with the NIST B-163 polynomial (which is in wide-

spread use in real-world applications) for different digit sizes to find the optimum

values. We use the critical path estimation and latency to calculate the time required

for one multiplication. The area is calculated using the estimation we made for each

component of the multiplier (tabulated in Table 6.4). Real world estimations are done

using the standard cell library from [77] as shown in Table 6.3.
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Table 6.2: LSD Multiplier: Latency and critical path

Latency Critical Path

SAM (D ≥ 2) dm/De+ 1 1∆AND + dlog2(D + 1)e∆XOR

r-nomial

DAM (D ≥ 2) dm/De+ 1 1∆AND + dlog2(dD/2e+ 1)e∆XOR

r-nomial

NAM (n ≥ 3, D > n) dm/De+ 2 1∆AND + dlog2(dD/ne+ 1)e∆XOR

r-nomial

Table 6.3: Area and time complexity of 0.18µm CMOS standard cells

A(µm2) T (ns)

2-input AND 32 0.6

2-input XOR 56 0.6

D Flip Flop 96 0.6

2:1 Mux 48 0.6

6.4.1 Evaluation of the SAM

Our single accumulator multiplier architecture is very similar to the digit multipliers

used in the open literature. In order to allow an analysis of this multiplier, we plot

Fig. 6.10. This plot shows the time taken to complete one multiplication for different

digit sizes for SAM.

Concluding from Fig. 6.10, one realizes that the digit-size D equal to a powers of

2, like 4, 8, 16, 32, 64, are the local worse values. However, these kind of D values are

normally used as digit-sizes for ECC implementations [30, 63].

In addition, one can see that values of D of the form 2l − 1 are optimum because

of the optimum binary tree structure they generate. Since, the multiplier is the most

important component in these cryptosystems which also dictates the overall efficiency,
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changing the digit sizes to the more optimum values can give a much better perfor-

mance.
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Figure 6.10: Time to complete one multiplication of the single accumulator multiplier

We can generate a very fast design by using a lot of resources, hence a large digit-

size leads to a faster multiplier. Thus, one has to consider speed and area in order to

get the optimum multiplier, like using the area-time product. Fig. 6.11 we draw the

area-time product over different digit-sizes of the single accumulator multiplier. This

plot clearly shows that most commonly used digit sizes are not only slower but also

inefficient in terms of the area-time product used. Better and faster implementations

of public key cryptography can be obtained using traditional LSD SAM multiplier by

choosing D = 2l−1. For e.g., a SAM multiplier with D=3 can compute a multiplication

in the same time as D=4, but will require much smaller area. For D=7, the multiplier

would compute the result faster than D=8 with 10% lesser area.
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Figure 6.11: Area-Time Product of the single accumulator multiplier

6.4.2 Evaluation of all multiplier options

In this subsection, we compare all our introduced multiplier options. Fig. 6.12 shows

the time requirements for the different multipliers. As expected, DAM and NAM (n=3)

architectures are faster than SAM. Its important to note that the optimum digit sizes

changes for different architectures. This is because of the optimum tree structures

which are formed at different sizes of D within the DAM and NAM architecture. For

e.g., one should rather use D=4 for NAM, whereas this digit size will be not optimal

for DAM and SAM. For DAM and SAM we rather would use D=3.

The area-time product of the multipliers is plotted in Fig. 6.13. This shows that

DAM and NAM are also efficient architectures when we consider speed and resources

of hardware used.

NAM can be inefficient for small D sizes because of the extra overhead in area due

to the registers and the extra clock cycle in the last step. The designer has to choose

the right architecture based on the various constraints like area and speed. For e.g., if

the designer had a compromise of area and speed at D=8 for a SAM architecture, then
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Figure 6.12: Time to complete one multiplication of all the different multiplier imple-
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he can either implement it with the same or smaller area with SAM (D=7) or DAM

with D=6 or NAM (n=3) with D=3 with much better speed. This extra flexibility

eventually allows the designer to build more optimum cryptosystems than presently

available.

6.5 Summary

In this contribution, we showed new architectures for implementing LSD multipliers.

The conditions that apply on the irreducible polynomial to successfully implement

such architectures are given. It can be seen that all NIST recommended polynomials

easily satisfy these conditions, which make these architectures very promising for im-

plementing curve based public key cryptosystems. An evaluation of the multipliers for

different digit sizes provide optimum values of D which give the best efficiency for a

required speed. This has enabled us to show that present digit-sizes being used are the

83



6.5 Summary

500E+04

700E+04

900E+04

1.100E+04

1.300E+04

1.500E+04

1.700E+04

1.900E+04

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
digit size

u
m

^2
*n

s

SAM
DAM
NAM (n=3)

D=3
D=4

D=7
D=8

D=15
D=16

D=31
D=32

Figure 6.13: Area-Time Product of the different multiplier implementations

worst choices and much better implementations are possible. The different possible

architectures also provide the designer with more flexibility in making the compromise

between area and time which is inherent in all implementations.
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Chapter 7

Hardware Design:
ECC in the Frequency Domain

We present here the results of the collaborative work with Selcuk Baktır, Worcester

Polytechnic Institute, USA.

7.1 Motivation and Outline

Efficiency of an elliptic curve cryptosystem is highly dependent on the underlying finite

field arithmetic. When performing ECC in Fpm , field multiplication can be achieved

with a quadratic number of multiplications and additions in the base field Fp using

the classical polynomial multiplication method. Using the Karatsuba algorithm, this

complexity can be reduced significantly, however one still needs to do a subquadratic

number of multiplications and additions in the base field Fp. Multiplication operation

is inherently much more complex than other operations such as addition, therefore it

is desirable that one performs as small number of base field multiplications as possible

for achieving an extension field multiplication. The DFT modular multiplication[7]

achieves multiplication in Fpm in the frequency domain with only a linear number of

base field Fp multiplications in addition to a quadratic number of simpler base field

operations such as additions/subtractions and bitwise rotations.

In an ECC processor the multiplier unit usually consumes a substantial area on the

chip, therefore it is crucial that one uses an area/time efficient multiplier, particularly

in environments such as wireless sensor networks where resources are precious. In

this work, we address this issue by proposing an area/time efficient ECC processor

architecture utilizing DFT modular multiplication in optimal extension fields (OEF)[5,

6] with the Mersenne prime field characteristic p = 2n − 1 and the extension degree
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m = n.

This chapter is organized as follows. In Section 7.2, we provide some background in-

formation on OEF multiplication in the frequency domain. In Section 7.3, we overview

the DFT modular multiplication algorithm and also present some optimization ideas

for efficient implementation of this algorithm in hardware. In Section 7.4, we present

an efficient ASIC implementation of the elliptic curve cryptographic processor design

using AMI Semiconductor 0.35µm CMOS technology which utilizes an optimized DFT

modular multiplier architecture over F(213−1)13 , F(217−1)17 and F(219−1)19 . Finally in Sec-

tion 7.5, we present our implementation results.

7.2 Mathematical Background

OEFs are found to be successful in ECC implementations in software where resources

such as computational power and memory are constrained, as shown in Chapter 3

and Chapter 5. In this work, we propose an efficient hardware architecture which

performs the extension field multiplication operation (described in Section 2.5.1), in

the frequency domain. For this, we need to first represent the operands in the frequency

domain. To convert an element in Fpm into the frequency domain representation, the

number theoretical transform is used, which is explained next.

7.2.1 Number Theoretic Transform (NTT)

Number theoretic transform over a ring, also known as the discrete Fourier transform

(DFT) over a finite field, was introduced by Pollard [66]. For a finite field Fp and a

sequence (a) of length d whose entries are from Fp, the forward DFT of (a) over Fp,

denoted by (A), can be computed as

Aj =
d−1∑
i=0

air
ij , 0 ≤ j ≤ d− 1 . (7.1)

Here, we refer to the elements of (a) and (A) by ai and Ai, respectively, for 0 ≤ i ≤ d−1.

Likewise, the inverse DFT of (A) over Fq can be computed as

ai =
1

d
·

d−1∑
j=0

Ajr
−ij , 0 ≤ i ≤ d− 1 . (7.2)
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We will refer to the sequences (a) and (A) as the time and frequency domain repre-

sentations, respectively, of the same sequence. The above DFT computations over the

finite field Fp are defined by utilizing a dth primitive root of unity, denoted by r, from

Fp or a finite extension of Fp. In this work, we will use r = −2 ∈ Fp as it enables effi-

cient implementation in hardware which will be further discussed in Section 7.3.3. We

will consider only finite fields Fpm with a Mersenne prime characteristic p = 2n−1 and

odd extension degree m = n. This makes the sequence length d = 2m, since r = −2

is a (2m)th primitive root of unity in the base field F(2n−1). In this case when r = −2

and p = 2n − 1 a modular multiplication in Fp with a power of r can be achieved very

efficiently with a simple bitwise rotation (in addition to a negation if the power is odd).

The discrete Fourier transform computed modulo a Mersenne prime, as in our case, is

called Mersenne transform [67].

7.2.2 Convolution Theorem and Polynomial Multiplication in the
Frequency Domain

A significant application of the Fourier transform is convolution. Convolution of two d-

element sequences (a) and (b) in the time domain results in another d-element sequence

(c), and can be computed as follows:

ci =
d−1∑
j=0

ajbi−j mod d , 0 ≤ i ≤ d− 1 . (7.3)

According to the convolution theorem, the above convolution operation in the time

domain is equivalent to the following computation in the frequency domain:

Ci = Ai ·Bi , 0 ≤ i ≤ d− 1 , (7.4)

where (A), (B) and (C) denote the discrete Fourier transforms of (a), (b) and (c),

respectively. Hence, convolution of two d-element sequences in the time domain, with

complexity O(d2), is equivalent to simple pairwise multiplication of the DFTs of these

sequences and has a surprisingly low O(d) complexity.

Note that the summation in Eq. 7.3) is the cyclic convolution of the sequences (a)

and (b). We have seen that this cyclic convolution can be computed very efficiently

in the Fourier domain by pairwise coefficient multiplications. Multiplication of two

polynomials on the other hand is equivalent to the acyclic (linear) convolution of the

polynomial coefficients. However, if we represent elements of Fpm , which are (m− 1)st
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degree polynomials with coefficients in Fp, with at least d = (2m−1) element sequences

by appending zeros at the end, then the cyclic convolution of two such sequences

will be equivalent to their acyclic convolution and hence gives us their polynomial

multiplication.

One can form sequences by taking the ordered coefficients of polynomials. For

instance,

a(x) = a0 + a1x + a2x
2 + . . . + am−1x

m−1 ,

an element of Fpm in polynomial representation, can be interpreted as the following

sequence after appending d−m zeros to the right:

(a) = (a0, a1, a2, . . . , am−1, 0, 0, . . . , 0) . (7.5)

For a(x), b(x) ∈ Fpm , and for d ≥ 2m − 1, the cyclic convolution of (a) and (b) yields

a sequence (c) whose first 2m − 1 entries can be interpreted as the coefficients of a

polynomial c(x) such that c(x) = a(x)·b(x). The computation of this cyclic convolution

can be performed by simple pairwise coefficient multiplications in the discrete Fourier

domain.

Note, that using the convolution property the polynomial product c(x) = a(x) ·b(x)

can be computed very efficiently in the frequency domain, but the final reduction by

the field generating polynomial is not performed. For further multiplications to be

performed on the product c(x) in the frequency domain, it needs to be first reduced

modulo the field generating polynomial. DFT modular multiplication algorithm, which

will be mentioned briefly in the following section, performs both polynomial multipli-

cation and modular reduction in the frequency domain and thus makes it possible to

perform consecutive modular multiplications in the frequency domain.

7.3 Modular Multiplication in the Frequency Domain

To the best of our knowledge, DFT modular multiplication algorithm [7], which per-

forms Montgomery multiplication in Fpm in the frequency domain, is the only existing

frequency domain multiplication algorithm to achieve efficient modular multiplication

for operand sizes relevant to Elliptic Curve Cryptography. In this section, we give a

brief overview of this algorithm and the notation used.
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7.3.1 Mathematical Notation

Since the DFT modular multiplication algorithm runs in the frequency domain, the

parameters used in the algorithm are in their frequency domain sequence representa-

tions. These parameters are the input operands a(x), b(x) ∈ Fpm , the result c(x) =

a(x) · b(x) · x−(m−1) mod f(x) ∈ Fpm , irreducible field generating polynomial f(x),

normalized irreducible field generating polynomial f ′(x) = f(x)/f(0), and the in-

determinate x. The time domain sequence representations of these parameters are

(a), (b), (c), (f), (f ′) and (x), respectively, and their frequency domain sequence repre-

sentations, i.e., the discrete Fourier transforms of the time domain sequence represen-

tations, are (A), (B), (C), (F ), (F ′) and (X). We will denote elements of a sequence

with the name of the sequence and a subscript for showing the location of the particu-

lar element in the sequence, e.g., for the indeterminate x represented as the following

d-element sequence in the time domain

(x) = (0, 1, 0, 0, · · · , 0) ,

the DFT of (x) is computed as the following d-element sequence

(X) = (1, r, r2, r3, r4, r5, . . . , rd−1) ,

whose first and last elements are denoted as X0 = 1 and Xd−1 = rd−1, respectively.

7.3.2 DFT Modular Multiplication Algorithm

DFT Modular Multiplication shown in Algorithm 7.1, consists of two parts: Multipli-

cation (Steps 1 and 3) and Montgomery reduction (Steps 4 through 13). Multiplication

is performed simply by pairwise multiplication of the two input sequences (A) and (B).

This multiplication results in (C) (which corresponds to c(x) = a(x) · b(x)), a polyno-

mial of degree at most 2m− 2. For performing further multiplications over c(x) using

the same method in the frequency domain, one needs to first reduce it modulo f(x),

so that its time domain representation is of degree at most m− 1.

DFT modular multiplication algorithm performs reduction in the frequency domain

by DFT Montgomery Reduction (Steps 3 to 9). The inputs to DFT Montgomery reduc-

tion are the frequency domain sequence representation (C) of c(x) = a(x) · b(x) and its

output is the sequence (C) corresponding to c(x) = a(x)·b(x)·x−(m−1) mod f(x) ∈ Fpm .

DFT Montgomery reduction is a direct adaptation of Montgomery reduction. In the

frequency domain, the value S is computed such that (c(x)+S ·(f ′(x))) is a multiple of
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Algorithm 7.1 DFT modular multiplication algorithm for Fpm

Input: (A) ≡ a(x) ∈ Fpm , (B) ≡ b(x) ∈ Fpm

Output: (C) ≡ a(x) · b(x) · x−(m−1) mod f(x) ∈ Fpm

1: for i = 0 to d− 1 do

2: Ci ← Ai ·Bi

3: end for

4: for j = 0 to m− 2 do

5: S ← 0

6: for i = 0 to d− 1 do

7: S ← S + Ci

8: end for

9: S ← −S/d

10: for i = 0 to d− 1 do

11: Ci ← (Ci + F ′
i · S) ·X−1

i

12: end for

13: end for

14: Return (C)

x. Note that (c(x)+S · (f ′(x))) is equivalent to c(x) mod f(x). The algorithm then di-

vides (c(x)+S·f ′(x)) by x and obtains a result which is congruent to c(x)·x−1 mod f(x).

By repeating this m− 1 times (Steps 4 to 13) the initial input which is the (2m− 2)nd

degree input polynomial c(x) = a(x) ·b(x) is reduced to the final (m−1)st degree result

which is congruent to a(x) · b(x) · x−(m−1) mod f(x). Hence, for the inputs a(x) · xm−1

and b(x) · xm−1, both in Fpm , the DFT modular multiplication algorithm computes

a(x) · b(x) · xm−1 ∈ Fpm and thus the Montgomery residue representation is kept intact

and further computations can be performed in the frequency domain using the same

algorithm.

7.3.3 Optimization

In this work, we show that for the case of r = −2, odd m and n = m, i.e., when the bit

length of the field characteristic p = 2n − 1 is equal to the field extension degree, the

DFT modular multiplication can be optimized by precomputing some intermediary

values in the algorithm. Our optimization takes advantage of the fact that when

r = −2, p = 2n − 1, the field generating polynomial is f(x) = xm − 2 and hence

f ′(x) = −1
2
· xm + 1, m is odd and m = n, the following equalities hold in Fp:
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7.3 Modular Multiplication in the Frequency Domain

F ′
i = −1

2
· (−2)mi + 1 =





−1
2

+ 1 = 1
2

, i even

1
2

+ 1 , i odd

(7.6)

(7.7)

This equality holds since

(−2)mi ≡ (−2)ni ≡ (−1)ni(2n)i ≡ (−1)ni (mod p) .

Note that in this case F ′
i has only two distinct values, namely −1

2
+ 1 = 1

2
and 1

2
+ 1

for the irreducible field generating polynomial f(x) = xm− 2. Hence, F ′
i ·S in Step 11

of the Algorithm 7.1 can attain only two values for any distinct value of S and these

values can be precomputed outside the loop avoiding all such computations inside the

loop. The pre-computations can be achieved very efficiently with only one bitwise

rotation and one addition. With the suggested optimization, both the number of base

field additions/subtractions and the number of base field bitwise rotations required to

perform an extension field multiplication are reduced by d(m− 1) = 2m(m− 1).

n p = 2n − 1 m d r equivalent binary field size

13 8191 13 26 −2 ∼ 2169

17 131071 17 34 −2 ∼ 2289

19 524287 19 38 −2 ∼ 2361

Table 7.1: List of parameters suitable for optimized DFT modular multiplication.

In Algorithm 7.2, we present the optimized algorithm for the irreducible polynomial

f(x) = xm− 2. In Table 7.1, we suggest a list of parameters for implementation of the

optimized algorithm over finite fields of different sizes. Note that these parameters are

perfectly suited for Elliptic Curve Cryptography. In Section 7.5 we provide implemen-

tation results for all the finite fields listed in Table 7.1 and thus show the relevance

of the optimized algorithm for area/time efficient hardware implementation of ECC in

constrained environments.
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7.3 Modular Multiplication in the Frequency Domain

Algorithm 7.2 Optimized DFT modular multiplication in Fpm for r = −2, p = 2n−1,

m odd, m = n and f(x) = xm − 2

Input: (A) ≡ a(x) ∈ Fpm , (B) ≡ b(x) ∈ Fpm

Output: (C) ≡ a(x) · b(x) · x−(m−1) mod f(x) ∈ Fpm

1: for i = 0 to d− 1 do

2: Ci ← Ai ·Bi

3: end for

4: for j = 0 to m− 2 do

5: S ← 0

6: for i = 0 to d− 1 do

7: S ← S + Ci

8: end for

9: S ← −S/d

10: Shalf ← S/2

11: Seven ← Shalf

12: Sodd ← S + Shalf

13: for i = 0 to d− 1 do

14: if i mod 2 = 0 then

15: Ci ← Ci + Seven

16: else

17: Ci ← −(Ci + Sodd)

18: end if

19: Ci ← Ci/2
i

20: end for

21: end for

22: Return (C)
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7.4 Implementation of an ECC Processor Utilizing
DFT Modular Multiplication

The DFT modular multiplication algorithm trades off computationally expensive mod-

ular multiplication operations for simple bitwise rotations which can be done practically

for free in hardware by proper rewiring. In this section, we present a hardware imple-

mentation of an ECC processor using the DFT modular multiplication algorithm. We

exemplarily use the field F(213−1)13 to explain our design, although the design is easily

extendable for other parameter sizes mentioned in Table 7.1 and the implementation

results for all parameter sizes are given in Section 7.5.

We first describe the implementation of the base field arithmetic in F(213−1) and

then make parameter decisions based on the Algorithm 7.2 to implement an efficient

DFT modular multiplier. Then, we present the overall processor design to compute

the ECC scalar point multiplication.

7.4.1 Base Field Arithmetic

Base field arithmetic consists of addition, subtraction (or negation) and multiplication

in F(213−1). The arithmetic architectures are designed to ensure a area/time efficiency.

FAFAFA HA

a0b0a1b1a2b2a12b12

c�1c�2c�12 c�0

HAHAHAHA

c1c2c12 c0

ca1ca2ca12

ca13

ca13

0

Figure 7.1: Base Field Addition Architecture
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Base Field Addition and Subtraction

Addition in the base field is implemented using a ripple carry adder. Reduction with

the Mersenne prime p = 213 − 1 is just an additional addition of the carry generated.

This additional addition is performed independently of the value of the carry to avoid

any timing related attacks. Fig. 7.1 shows the design of the base field adder built using

half adders (HA) and full adders (FA).

Negation in the base field is extremely simple to implement with a Mersenne prime p

as the field characteristic. Negation of B ∈ Fp is normally computed as B′ = p − B.

However, when p is a Mersenne, it is easy to see from the binary representation of

p = 213 − 1 (which are all 1’s) that this subtraction is equivalent to flipping (NOT) of

the bits of B. Hence, subtraction in this architecture can be implemented by using the

adder architecture with an additional bitwise NOT operation on the subtractor.

Base Field Multiplication

Base field multiplication is a 13× 13-bit integer multiplication followed by a modular

reduction with p = 213 − 1. Since p is a Mersenne prime, we can easily implement

the integer multiplication with interleaved reduction. Fig. 7.2 shows the design of

our multiplier architecture. It consists of the multiplication core (which performs the

integer multiplication with interleaved reduction of the carry) and a final reduction of

the result which is performed using a ripple carry adder.

The processing cell of the multiplier core, which is shown in Fig. 7.3, is built with

a full adder (FA). Here, ai and bi represent the inputs, cai represents the carry, and i

and k are the column and row numbers, respectively, in Fig. 7.2.

7.4.2 Extension Field Multiplication

Finite field multiplication in an extension field is computed using a polynomial multi-

plier with coefficients in the base field, and then reducing the result with the reduction

polynomial as described in Section 2.5.1. Using an extension field Fpm can reduce the

area of a finite field multiplier in a natural way since in this case only a smaller base

field multiplier is required. For instance, for performing multiplication in F(213−1)13 one

would only need a 13 × 13-bit base field multiplier. However, an implementation in

the time domain has the disadvantage of a quadratic time complexity because a total

number of 13×13 = 169 base field multiplications need to be computed. In our design,
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HA

Multiplication core

Ripple carry adder

HAHA

HA HA HA

HA

FAFAFA

FA FA FA

FAFAFA

FA FA

Figure 7.2: Base Field Multiplication with Interleaved Reduction

we save most of these base field multiplications by utilizing DFT modular multiplica-

tion since we now have to perform only a linear number of 26 base field multiplications

(Steps 1-3, Algorithm 7.2).

DFT Montgomery Multiplication
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FA

ai b(i+k)mod13

ca(i,k)

ca((i+1)mod13,

k+1)

c�k

c�(k+1)

Figure 7.3: Processing Cell for the Base Field Multiplier Core

For the application of DFT modular multiplication, Algorithm 7.2 is modified for an

optimized hardware implementation. The main design decision here is to use a single

base field multiplier to perform Step 2 (for pairwise coefficient multiplications) and

Step 9 (for multiplications with the constant −1/d). Next, the two loops Steps 6-8 (for

accumulating Ci’s) and Steps 13-20 (for computing Ci’s) were decided to be performed

together simultaneously. The final design that emerged is as shown in Fig. 7.4 and the

functionality is represented by the pseudo-code in Algorithm 7.3. During Steps 2-5

(Algorithm 7.3), the multiplexer select signal red is set to 0 and later it is set to 1 for

the remaining steps. This allows the MUL (the base field multiplier) to be used for the

initial multiplication with the proper results accumulated in the register S. Registers

Seven and Sodd cyclically rotate its contents every clock cycle performing the Steps 17

and 18 (Algorithm 7.3), respectively.

Step 19 in Algorithm 7.2, which involves different amounts of cyclic rotations for

different Ci would normally be inefficient to implement in hardware. In this work, this

problem is solved in a unique way with the FIFO (First-In First-Out) cyclic register

block. This temporary memory location for storing Ci values pushes in values till it

is completely full. In the next loop, as the values are moved out of the FIFO, each

of them is cyclically rotated at each clock cycle as it moves up. Hence the different

Ci values are cyclically rotated by different number of bits with no extra cost. The

pseudo-code which shows this functionality of the memory block is given in Steps 19-

21 of Algorithm 7.3. Steps 14-18 (Algorithm 7.2) are implemented using the two

multiplexors with the select signal o e.

Thus, in this work the steps of the original DFT modular multiplication algo-

rithm (Algorithm 7.2) are reordered so as to fine tune it to generate a hardware efficient
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Algorithm 7.3 Pseudo-code for hardware implementation of DFT multiplier

Input: (A), (B)

Output: (C) ≡ a(x) · b(x) · x−(m−1) mod f(x)

1: S ← 0

2: for i = 0 to d− 1 do

3: Ci ← Ai ·Bi

4: S ← S + Ci

5: end for

6: for j = 0 to m− 2 do

7: S ← −S/d

8: Seven ← S/2

9: Sodd ← S + S/2

10: S ← 0

11: for i = 0 to d− 1 do

12: if i mod 2 = 0 then

13: Ci ← Ci + Seven

14: else

15: Ci ← −(Ci + Sodd)

16: end if

17: Seven ← Seven/2

18: Sodd ← Sodd/2

19: for k = i + 1 to d− 1 do

20: Ck ← Ck/2

21: end for

22: S ← S + Ci

23: end for

24: end for

25: Return (C)
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Figure 7.4: DFT Montgomery Multiplication architecture

architecture. The area is optimized by reusing the various components. Also, since all

the bus signals are 13-bit wide, signal routing is made extremely easy in the design.

7.4.3 Point Arithmetic

The overall architecture of the ECC processor is shown in Fig. 7.5. The Arithmetic Unit

consists of the DFT modular multiplier and the base field adder which has a negation

unit on one of its inputs for doing subtraction. All the necessary point variables are

stored in the Memory component. We use FIFO registers here, because the DFT

multiplication and addition(subtraction) operate only on 13-bits of the data on each

clock cycle. This enables our processor to use 13-bit wide buses throughout the design.

To avoid losing the contents of the memory when being read out, they are looped back

in the FIFO if new values are not being written in.

The Control Unit is the most important component which performs the point arith-
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metic by writing the required variables onto the A and B busses, performing the re-

quired operations on them and storing the result back to the proper memory register.

The Control Unit is also responsible for interacting with the external world by reading

in inputs and writing out the results. The instruction set of the Control Unit is given

in Table 7.4.

The ECC point arithmetic is performed using mixed Jacobian-affine coordinates[34]

to save area on inversion. Here, we assume the elliptic curve is of the form y2 =

x3−3x+b. We use the binary NAF method (Algorithm 2.12) with mixed co-ordinates to

perform the point multiplication. The point arithmetic is performed such that the least

amount of temporary storage is required. Since, the point multiplication algorithm

allows overwriting of the inputs while performing the point doubling and addition, we

require only three extra temporary memory locations. The command sequence for the

point doubling and addition issued by the Control Unit are given in Table 7.5 and

Table 7.6, respectively, with temporary variables denoted as T1, T2 and T3. The point

doubling is performed in Jacobian coordinates and requires 8 DFT multiplications and

12 sequence additions (or subtractions). Point addition is performed in mixed Jacobian

and affine coordinates, and requires 11 DFT multiplications and 7 additions. Point

subtraction (for NAF method) is easily implemented by flipping the bits of y2 in Step 6

of the point addition. The total size of the Memory is therefore eight sequence FIFO

registers for (X1, Y1, Z1, x2, y2, T1, T2 and T3) or 26 ∗ 13 ∗ 8 = 2704 bits.

The inversion required for final conversion from projective to affine coordinates

is performed using Fermat’s Little Theorem. The conversion from time to frequency

domain and vice-versa is done by simple rotations which is done using the FIFO cyclic

register block inside the DFT multiplier.

7.5 Performance Analysis

We present here the implementation results for the ECC processor design for three

different finite fields: F(213−1)13 , F(217−1)17 and F(219−1)19 . For our performance measure-

ments we synthesized for a custom ASIC design using AMI Semiconductor 0.35µm

CMOS technology using the Synopsys Design Compiler tools. Timing measurements

were done with Modelsim simulator against test vectors generated with Maple.

Table 7.2 shows the area requirements for the ECC processor in terms of the equiva-

lent number of NAND gates. The areas required for each of the three main components

of the processor are also shown individually.
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Figure 7.5: Top Level ECC Processor Architecture

Table 7.2: Equivalent Gate Count Area of ECC Processor

Field Arithmetic Unit Control Unit Memory Total Area

F(213−1)13 5537.06 351.26 18768.66 24754.62

F(217−1)17 6978.95 362.56 31794.52 39243.00

F(219−1)19 10898.82 362.89 39586.72 50959.02

Table 7.3 presents the number of clock cycles required for the DFT multiplication

and ECC point arithmetic. It also shows the maximum frequency of the processor and

total time required to perform a point multiplication.

We attempt here to compare our results to VLSI implementations of ECC which are

openly available in literature and oriented towards light-weight implementations. To

the best of our knowledge, the closest ASIC implementation of an OEF is proposed in

[14] which uses a CalmRISC 8-bit micro-controller with MAC2424 math co-processor

to implement ECC point multiplication over F(216−165)10 . It computes one point mul-

tiplication in 122 ms at 20 Mhz which is comparatively much slower than our results

for the 169-bit OEF. The paper does not mention any area figures for the device. A

low power elliptic curve digital signature chip over the binary field F2178 is presented
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Table 7.3: Timing measurements (in clock cycles) for the ECC Processor

Field DFT Point Point Max. Frequency Point

multi. Double Addition (Mhz) Multiplication

F(213−1)13 354 3180 4097 238.7 3.47 ms

F(217−1)17 598 5228 6837 226.8 10.33 ms

F(219−1)19 744 6444 8471 221.7 16.34 ms

in [71]. It uses 0.5µm CMOS technology and the point multiplication occupies 112K

gates which is almost double the size of our 361-bit OEF implementation. The perfor-

mance is however much better requiring just 4.4ms to compute a signature at 20Mhz.

An implementation of ECC over the prime field F(2167+1)/3 is shown in [64]. It occupies

an area of around 30K gates and performs a point multiplication in 6.3ms at 100Mhz.

A very small implementation of ECC over 192, 224 and 256-bit prime fields is men-

tioned in [79] using 0.35µm CMOS technology. The area requirements are between

23K gates and 31K gates. The performance is around 10.2 ms at 66 Mhz for the 192-

bit ECC. Based on these implementations, we can easily confirm that the proposed

implementation is area efficient without compromising on speed.

7.6 Summary

We have proposed a novel hardware architecture for DFT modular multiplication which

is area efficient. We have also presented an ECC processor architecture to perform point

multiplication in the frequency domain using this multiplier. We have synthesized our

architecture for custom VLSI CMOS technology to estimate the area and the time

performance, and shown that the proposed ECC processor is time/area efficient and

useful in constrained environments such as sensor networks.
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Table 7.5: Point Doubling Instruction Sequence for ECC Processor.

Input:P=(X1, Y1, Z1) in Jacobian.

Output:2P=(X1, Y1, Z1) in Jacobian.

Command input input output

< addrA > < addrB > < addrC >

DFT MUL Z1 Z1 T1

SUB SEQ X1 T1 T2

ADD SEQ X1 T1 T3

DFT MUL T2 T3 T1

ADD SEQ T1 T1 T2

ADD SEQ T1 T2 T1

DFT MUL Y1 Z1 Z1

ADD SEQ Z1 Z1 Z1

DFT MUL Y1 Y1 Y1

ADD SEQ Y1 Y1 T2

ADD SEQ T2 T2 T2

DFT MUL Y1 T2 T3

ADD SEQ T3 T3 T3

DFT MUL X1 T2 T2

DFT MUL T1 T1 X1

SUB SEQ T1 T2 X1

SUB SEQ T1 T2 X1

SUB SEQ T2 X1 Y1

DFT MUL Y1 T1 Y1

SUB SEQ Y1 T3 Y1
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Table 7.6: Point Addition Instruction Sequence for ECC Processor

Input:P=(X1, Y1, Z1) in Jacobian, Q=(x2, y2) in affine

Output:P+Q=(X1, Y1, Z1) in Jacobian.

Command input input output

< addrA > < addrB > < addrC >

DFT MUL Z1 Z1 T1

DFT MUL x2 T1 T2

SUB SEQ T2 X1 T2

DFT MUL Z1 T1 T1

DFT MUL Z1 T2 Z1

DFT MUL y2 T1 T1

SUB SEQ T1 Y1 T1

DFT MUL T2 T2 T3

DFT MUL T2 T3 T2

DFT MUL X1 T3 T3

DFT MUL T1 T1 X1

SUB SEQ X1 T2 X1

SUB SEQ X1 T3 X1

SUB SEQ X1 T3 X1

DFT MUL Y1 T2 Y1

SUB SEQ T3 X1 T3

DFT MUL T1 T3 T3

SUB SEQ T3 Y1 Y1
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Chapter 8

Hardware Design:
Tiny ECC Processor over F2m

We present here results of the work which was in part published in [48].

8.1 Motivation and Outline

A number of hardware implementations for standardized Elliptic Curve Cryptography

have been suggested in literature, but very few of them are aimed for low-end de-

vices. Most implementations focus on speed and are mostly only suitable for server

end applications due to their huge area requirements. A survey of different ECC imple-

mentations can be found in [10]. An ISE based implementation as shown in Chapter 4

provides a simple solution if a processor is already available on the device. However,

there is an equally important need for a stand-alone ECC engines in small constrained

devices used for different applications, like sensor networks and RF-ID tags. This is

normally dictated by the needs for better performance required by a communication

protocol or energy constraints (as a stand-alone engine can be selectively switched off

when not in use).

The different ECC processor implementations that have been suggested for such

low-end applications normally use non-standardized curves and hence are not accept-

able for commercial applications. A few of these implementations have been previously

discussed in Section 7.5. The work in [79] presents an ECC implementation aimed for

low-area for both F2m and Fp curves. The implementations use field sizes in the range

of 191 to 256-bits for certain standardized curves.

In this work, we try to find the limits of a low-area stand-alone public-key processor

for standardized ECC curves. Therefore, we tradeoff flexibility in a design for a spe-
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cific standardized binary field curve which is quite reasonable for constrained devices.

We also note from previous implementations ([79] and Chapter 7), that the memory

requirements for storage of points and temporary variables can contribute substan-

tially (more than 50%) to the overall size of the ECC processor. Hence, we aim for

algorithms that require less area even if it leads to a small computational drawback.

The chapter is organized as follows: In Section 8.2, we give the proper choice

and tweaks of the different algorithms that allow to reduce area without drastically

affecting the performance. Section 8.3 presents the implementation design for the

different arithmetic units, memory unit and the overall processor design. Finally, we

analyze the area and performance in Section 8.4.

8.2 Mathematical Background

Characteristic two fields F2m are often chosen for hardware realizations [10] as they are

well suited for hardware implementation due to their “carry-free” arithmetic. This not

only simplifies the architecture but reduces the area due to the lack of carry arithmetic.

For the implementation of our stand-alone ECC processor, we use standardized binary

fields that provide short-term security, and also fields which are required for high

security applications. The four different field sizes chosen for our implementation

range from 113 to 193-bits, and are recommended in the standards SECG [1] and

NIST [60]) (the different recommended curves and the reduction polynomials are shown

in Table 8.1). For some of the constrained devices, short-term keys in 113-bit fields

can provide the adequate security required for the application and therefore are a good

option when area is extremely constrained.

Table 8.1: Standards recommended field sizes for F2m and reduction polynomial

Standard Field Size (m) Reduction polynomial

SECG 113 F113(x) = x113 + x9 + 1

SECG 131 F131(x) = x131 + x8 + x3 + x2 + 1

NIST, SECG 163 F163(x) = x163 + x7 + x6 + x3 + 1

SECG 193 F193(x) = x193 + x15 + 1
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A second reason for the use of the binary fields, is the simplified squaring structure,

which is a central idea used in the algorithms chosen for the processor design.

8.2.1 Squaring

As described in Section 2.4.1, squarings in F2m could be done in two steps, first an

expansion with interleaved 0’s (Eq. 2.11), and then reducing the double-sized result

with the reduction polynomial using the equivalence in Eq. 2.7. However, in hardware

these two steps can be combined if the reduction polynomial has a small number of

non-zero co-efficients (which is the case with the trinomial and pentanomial reduction

polynomials as in Table 8.1). Hence, the squaring can be efficiently implemented

to generate the result in one single clock cycle without huge area requirements. The

implementation and the area costs are discussed in detail in the implementation section.

8.2.2 Inversion

It is well known that performing point arithmetic in affine co-ordinates requires lesser

number of temporary variables. This is a very good argument to help reduce the mem-

ory requirements. However, the disadvantage is that the point operations in the affine

co-ordinates requires an inversion operation (see Section 2.4). Dedicated inversion

units using binary Euclidean methods are themselves costly to implement and require

extra storage variables. The other more simpler method to perform inversion is using

the Fermat’s Little Theorem [12]:

A−1 ≡ A2m−2 = (A2m−1−1)2 mod F (x) for A ∈ F2m . (8.1)

Since 2m−2 = 21+22+· · ·+2m−1, a straightforward way of performing this exponentia-

tion would be a binary square-and-multiply (similar to double-and-add Algorithm 2.10)

as A−1 = A21 · A22 · · ·A2m−1
, requiring a total of (m− 2) multiplications and (m− 1)

squarings. This is an extremely costly due to the large number of multiplications

and can considerably slow down an implementation of an ECC point multiplication.

Therefore, projective co-ordinates are chosen even for low-area implementations [79].

However, Itoh and Tsujii proposed in [39], a construction of an addition chain such

that the exponentiation could be performed in O(log2m) multiplications. Though the

algorithm was proposed for optimal normal basis implementations where squarings are

almost for free (cyclic rotations), the area requirements for the squaring structure in
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8.2 Mathematical Background

our implementation is within bounds. However, the timing efficiency of 1-clock cycle

is same as in the normal basis.

We first present here the addition chain construction and discuss the arithmetic

costs for the different fields that we use. Representing m− 1 in binary format, we can

write

m− 1 = 2q−1 + mq−22
q−2 + · · ·+ m12 + m0

where mi ∈ 0, 1 and q = blog2(m − 1)c + 1, the bit-length of m − 1. We can then

represent m− 1 as a bit vector: [1mq−2 · · ·m1m0]2.

The Itoh-Tsujii method is based on the idea that we can represent

2m−1 − 1 = 2[1mq−2···m1m0]2 − 1

= 2m0(22·[1mq−2···m1]2 − 1) + 2m0 − 1

= 2m0(2[1mq−2···m1]2 − 1) · (2[1mq−2···m1]2 + 1) + m0

(8.2)

Thus this process can be recursively iterated. If we define

Ti = (2[1mq−2···mi]2 − 1),

the recursive equation can be represented as

Ti = 2miTi+1 · (2[1mq−2···mi+1]2 + 1) + mi for 0 ≤ i ≤ (q − 2)

and Tq−1 = 1.

The exponentiation A2m−1−1 = AT0 can then be shown as an iterative operation:

ATi = A2miTi+1·(2[1mq−2···mi+1]2+1)+mi

= {(ATi+1)2[1mq−2···mi+1]2 · (ATi+1)}2mi · (A)mi for 0 ≤ i ≤ (q − 2)
(8.3)

Thus each iterative step requires [1mq−2 · · ·mi+1]2 squaring + 1 multiplication, and if

mi = 1, an additional squaring and multiplication. It can be easily showed that the

inverse A−1 can then be obtained in (blog2(m− 1)c+ Hw(m− 1)− 1) multiplications

and (m − 1) squaring using this addition chain, where Hw(.) denotes the Hamming

weight of the binary representation.

Algorithm 8.1, shows the steps involved for calculation of the inverse for the field

size 163 = [10100011]2. As shown, an inverse in F2163 requires 9 field multiplications

and 162 squaring, and one extra variable (denoted as T here) for the temporary storage

(which is blocked only during the inversion process and hence can be used later as a

temporary variable in the point multiplication algorithm). As we already mentioned,

a squaring can be computed in a single clock cycle, and hence the overall cost for

109



8.2 Mathematical Background

inverse is approximately 10 multiplications (assuming multiplication takes 163 clock

cycles). Hence, we take the different approach of using the affine co-ordinates for our

implementation of the ECC processor. Similar addition chains can be achieved for the

other field sizes. We give here only the costs in terms of the field multiplications and

squarings for each in the Table 8.2

Table 8.2: F2m inversion cost using Itoh-Tsuji method

Field size (m) Cost

113 8 F2113 M + 112 F2113 S

131 8 F2131 M + 130 F2131 S

163 9 F2163 M + 162 F2163 S

193 9 F2193 M + 192 F2193 S

8.2.3 Point multiplication

Montgomery point multiplication is a very efficient algorithm which is used widely be-

cause of the computational savings it gives in projective co-ordinates (see Section 2.6.4).

It also has the added advantage that it computes only over the x co-ordinates in each

iteration and hence requires lesser storage area. It is based on the fact that a run-

ning difference P = (x, y) = P1 − P2 can be used to derive the x co-ordinate of

P1 + P2 = (x1, y1) + (x2, y2) = (x3, y3) as:

x3 =





x + ( x1

x1+x2
)2 + x1

x1+x2
if P1 6= P2

x2
1 + b

x2
1

if P1 = P2

(8.4)

In affine co-ordinates, the Montgomery algorithm as shown in Algorithm 8.2.3, has

the disadvantage that it requires two inversions to be computed in each iteration.

The overall cost of the point multiplication using this algorithms is:

]INV. = 2blog2kc+ 2, ]MUL. = 2blog2kc+ 4,

]ADD. = 4blog2kc+ 6, ]SQR. = 2blog2kc+ 2.

We can reduce the inversions required by performing a simultaneous inversion. For

a1, a2 ∈ F2m and non-zero, we first compute the product A = a1 · a2 mod F (α) and
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Algorithm 8.1 Inversion with Itoh-Tsuji method over F2163

Input: A ∈ F2163 and irreducible polynomial F (t).

Output: B ≡ A−1 mod F (t) = A2m−2 where m = 163.

1: B ← A2 = A(10)2

2: T ← B · A = A(11)2

3: B ← T 22
= A(1100)2

4: T ← B · T = A(1111)2

5: B ← T 2 = A(11110)2

6: T ← B · A = A(11111)2

7: B ← T 25
= A(1111100000)2

8: T ← B · T = A
(1 · · · 1︸ ︷︷ ︸

10

)2

9: B ← T 210
= A

(1 · · · 1︸ ︷︷ ︸
10

0 · · · 0︸ ︷︷ ︸
10

)2

10: T ← B · T = A
(1 · · · 1︸ ︷︷ ︸

20

)2

11: B ← T 220
= A

(1 · · · 1︸ ︷︷ ︸
20

0 · · · 0︸ ︷︷ ︸
20

)2

12: T ← B · T = A
(1 · · · 1︸ ︷︷ ︸

40

)2

13: B ← T 240
= A

(1 · · · 1︸ ︷︷ ︸
40

0 · · · 0︸ ︷︷ ︸
40

)2

14: T ← B · T = A
(1 · · · 1︸ ︷︷ ︸

80

)2

15: B ← T 2 = A
(1 · · · 1︸ ︷︷ ︸

80

0)2

16: T ← B · A = A
(1 · · · 1︸ ︷︷ ︸

81

)2

17: B ← T 281
= A

(1 · · · 1︸ ︷︷ ︸
81

0 · · · 0︸ ︷︷ ︸
81

)2

18: T ← B · T = A
(1 · · · 1︸ ︷︷ ︸

162

)2

19: B ← T 2 = A
(1 · · · 1︸ ︷︷ ︸

162

0)2

20: Return B

{ 1 SQR }
{ 1 MUL }
{ 2 SQR }
{ 1 MUL }
{ 1 SQR }
{ 1 MUL }
{ 5 SQR }
{ 1 MUL }
{ 10 SQR }
{ 1 MUL }
{ 20 SQR }
{ 1 MUL }
{ 40 SQR }
{ 1 MUL }
{ 1 SQR }
{ 1 MUL }
{ 81 SQR }
{ 1 MUL }
{ 1 SQR }

perform a single inversion A−1 mod F (α). Then the individual inverses are obtained

by the two multiplication a−1
1 = A−1 · a2 mod F (α) and a−1

2 = A−1 · a1 mod F (α).

Hence, we can trade-off one inversion for three extra multiplications. From Table 8.2,
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8.2 Mathematical Background

Algorithm 8.2 Montgomery method for scalar point multiplication in F2m in affine

co-ordinates [52]

Input: P, k, where P = (x, y) ∈ E(F2m), k = [kl−1 · · · k1k0]2 ∈ Z+ and log2 k < m

Output: Q = k · P , where Q = (x1, y1) ∈ E(F2m)

1: if k = 0 or x = 0 then ReturnQ = (0, 0) and stop.

2: Set x1 ← x, x2 ← x2 + b/x2.

3: for i = l − 2 downto 0 do

4: Set t ← x1

x1+x2
.

5: if ki = 1 then

6: x1 ← x + t2 + t, x2 ← x2
2 + b

x2
2
.

7: else

8: x2 ← x + t2 + t, x1 ← x2
1 + b

x2
1
.

9: end if

10: end for

11: r1 ← x1 + x, r2 ← x2 + x

12: y1 ← r1(r1r2 + x2 + y)/x + y

13: Return (Q = (x1, y1)

we know that inversions for our implementation are more costly than 3 multiplications

and therefore a simultaneous inversion always gives a better performance.

There is however, the cost for one extra memory location to temporarily save the

product A during the computation of the inverse (apart from the temporary location

T ). We use two different options here: a) we allocate an extra memory location (de-

noted as R here) to store the temporary variable A, and b) the product A is computed

each time it is required during the inverse computation.

Based on the discussion on the inverse computation and as seen in Algorithm 8.1,

the value of A is required at H(m−1) different steps in the inverse operation and hence

has to be recomputed H(m−1)−1 times (since the computation at the beginning would

have to be done anyways). This is quite low and if area is the main constraint, replacing

A with extra multiplications would not drastically affect performance. Therefore, the

steps in the computation of the inverse in Algorithm 8.1:

T ← B · A;

are replaced with the computational sequence:

T ← a1 · a2; {T = A}
T ← B · T ;

As we mentioned, simultaneous inversion requires three extra multiplications to trade-

off one inversion. However, for the Montgomery point multiplication algorithm, we can
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reduce this to just two multiplications based on the observation that the x co-ordinate

of P1 − P2 (as in Eq. 8.4) can as well be replaced with x co-ordinates of P2 − P1 as

shown here (based on the F2m group operation defined in Section 2.4):

x3 =





x + ( x2

x1+x2
)2 + x2

x1+x2
if P 6= Q

x2
1 + b

x2
1

if P = Q
(8.5)

The modified Montgomery algorithm is as shown in Algorithm 8.2.3. We now

require one inversion and four multiplications in each iteration. The total cost of the

F2m point multiplication using this algorithms is:

]INV. = blog2kc+ 2, ]MUL. = 4blog2kc+ 4,

]ADD. = 4blog2kc+ 6, ]SQR. = 3blog2kc+ 2.

The algorithm also allows us to compute each iteration without the need for any extra

temporary memory locations (apart from the memory location T for inversion, and

based on the implementation option the memory location R)

8.3 Implementation Aspects

Based on the mathematical analysis, the main units that are required for the ECC

processor are the adder, multiplier and squaring units in F2m .

8.3.1 F2m Adder Unit

Addition is a simple bit wise XOR operation implemented using XOR gates. Therefore,

a F2m addition is implemented in our design using m XOR gates with the output latency

of 1 clock cycle.

8.3.2 F2m Multiplier Unit

Multipliers are normally the next biggest component in an ECC processor and therefore

the appropriate multiplier design needs to be chosen based on the implementation

goals (speed or area). When implementing for constrained devices, which requires

extreme savings in area, bit-serial multipliers are the most efficient that reduce area

and maintain good performance. The Least Significant Bit-serial (LSB) architecture,
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Algorithm 8.3 Modified Montgomery method for scalar point multiplication in F2m

in affine co-ordinates
Input: P, k, where P = (x, y) ∈ E(F2m), k = [kl−1 · · · k1k0]2 ∈ Z+ and log2 k < m

Output: Q = k · P , where Q = (x1, y1) ∈ E(F2m)

1: if k = 0 or x = 0 then ReturnQ = (0, 0) and stop.

2: Set x1 ← x, x2 ← x2 + b/x2.

3: for i = l − 2 downto 0 do

4: Set r0 ← x1 + x2.

5: if ki = 1 then

6: R = 1
(x1+x2)·x2

7: x1 ← x + (x2
2 ·R)2 + (x2

2 ·R), x2 ← x2
2 + b · (r0 ·R)2.

8: else

9: R = 1
(x1+x2)·x1

10: x2 ← x + (x2
1 ·R)2 + (x2

1 ·R), x1 ← x2
1 + b · (r0 ·R)2.

11: end if

12: end for

13: r1 ← x1 + x, r2 ← x2 + x

14: y1 ← r1(r1r2 + x2 + y)/x + y

15: Return (Q = (x1, y1)

as shown in Fig 4.3, is not suitable for the present implementation since the reduction

is performed on the operand A, and therefore A has to moved and stored within the

multiplier to perform this reduction. This requires extra area, equivalent to the storage

of one operand memory register. We get rid of this extra area cost by using the Most-

Significant Bit-serial (MSB) multiplier. The structure of the 163-bit MSB multiplier

is as shown Fig 8.1.

Here, the operand A can be enabled onto the data-bus A of the multiplier, directly

from the memory register location. The individual bits of bi can be sent from a memory

location by implementing the memory registers as a cyclic shift-register (with the out-

put at the most-significant bit). The value of the operand register remains unchanged

after the completion of the multiplication as it makes one complete rotation.

The reduction within the multiplier is now performed on the accumulating result

ci, as in step 4 in Algorithm 2.6. The taps that are feeded back to ci, are based on

the reduction polynomial. In Fig 8.1, which shows the implementation for F163(x)

reduction polynomial, the taps XOR the result of c162 to c7, c6 c3 and c0.
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A

C =A.B mod F(x)

c0c1c2c3c6c7
c161c162

bi

163

163

a162 a161 a7 a3a6 a2 a1 a0

c162 c161 c7 c3c6 c2 c1 c0

Figure 8.1: F2163 Most Significant Bit-serial (MSB) Multiplier circuit

The complexity of the multiplier is n AND + (n + t − 1) XOR gates and n FF

where t = 3 for a trinomial reduction polynomial (F113(x) and F193(x)) and t = 5

for a pentanomial reduction polynomial (F131(x) and F163(x)). The latency for the

multiplier output is n clock cycles. The maximum critical path is 2∆XOR (independent

of n) where, ∆XOR represents the delay in an XOR gate.

8.3.3 F2m Squarer Unit

As mentioned previously, we can implement a very fast squarer with a latency of a

single clock cycle. Squaring involves first the expansion by interleaving with 0’s, which

in hardware is just an interleaving of 0 bit valued lines on to the bus to expand it to

2n bits. The reduction of this polynomial is inexpensive, first, due to the fact that

reduction polynomial used is a trinomial or pentanomial, and secondly, the polynomial

being reduced is sparse with no reduction required for bn/2c of the higher order bits

(since they have been set to 0’s). The squarer is implemented as a hard wired XOR

circuit as shown in Fig. 8.2. The XOR requirements and the maximum critical path

(assuming an XOR tree implementation) for the four reduction polynomials used are

given in the Table 8.3.
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A 163

a162

c0

a1 a0a82

a160a160

a82

a162

a161a160

a83

a161

a159

a81

a161

c1c2c3c162

C =A
2
 mod F(x)

163

Figure 8.2: F2163 squaring circuit

8.3.4 ECC Processor design

The three units: F2m addition (ADD ), F2m multiplication (MUL ), and F2m squaring

(SQR ) are closely interconnected inside a single Arithmetic Unit (as shown in Fig. 8.3)

sharing the common input data-bus A. The appropriate result is selected at the output

data-bus C by the Controller signal Csel. The adder needs an additional data-bus B for

the second operand and the multiplier requires a single bit bi signal for the multiplicand.

The operands are stored in the Memory as registers (some of them as cyclic registers)

with the output being selected for A, B and bi using multiplexors with control signals

(Asel, Bsel and bi sel) from the Controller. All the operand register are connected in

parallel to the data-bus C, with the appropriate register being loaded based on the

Controller load signal Cld reg.

Inversion is done as mentioned using the Itoh-Tsuji method and thus requires no

additional hardware apart from the multiplier and squarer unit with some additional

control circuitry to enable the proper variables to the appropriate unit. We define

a single INV instruction which performs the required sequence of steps. Since the

inversion can be computed with (blog2(m− 1)c+ Hw(m− 1)− 1) multiplications and

(m− 1) squaring, the latency of the inversion in clock cycles is:

(blog2(m− 1)c+ Hw(m− 1)− 1) ·m + (m− 1) = (blog2(m− 1)c+ Hw(m− 1)) ·m− 1
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Table 8.3: F2m Squaring unit requirements

Reduction Polynomial XOR gates Critical Path

x113 + x9 + 1 56 XOR 2 ∆XOR

x131 + x8 + x3 + x2 + 1 205 XOR 3 ∆XOR

x163 + x7 + x6 + x3 + 1 246 XOR 3 ∆XOR

x193 + x15 + 1 96 XOR 2 ∆XOR

T

x1

x2

y1

y

x

MUL SQR
ADD

Arithmetic 

Unit

M
e
m

o
ry

ld_data addr Input Output rst start done clk

A

bi

B

A.B mod F(x)

A
2
 mod F(x)

A+B

CCB

A

counter

Controller

k

Asel

Bsel

Cld_reg

bi_sel mult_start

Csel

n

n

n

n

n
n

bi

bi_sel

Asel

Bsel

Csel

1

rd_data

Figure 8.3: Area optimized F2n ECC processor

The instruction set of the processor is as shown in Table 8.7. The Controller

executes the required instructions by enabling the appropriate control signals to the

Arithmetic Unit and Memory. The scalar k is stored within the Controller as a shift

register. The input operands x,y, and k are loaded externally on an n bit data-bus

using the addr signal. The final results x1 and y1 is similarly read out using the addr

signal.

The next important aspect of the design was to find the optimum sequence of com-

putation steps such that the least number of temporary memory is required. Another
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requirement during this optimization process, was to make sure that not all memory

variables be connected to the data-bus B and bi signal. This reduces the area require-

ment for the selection logic that is implemented with multiplexors and additionally,

the fact that memory variables which are implemented without a cyclic shift requires

much lesser area.

We use the modified Algorithm 8.2.3 to construct the sequence of instructions as

shown in Algorithm 8.5. As mentioned before we can get rid of the extra register R by

performing additional multiplications and hence Fig. 8.3 is shown without this register.

The processor requires only 6 memory locations, the inputs x, y , the outputs x1, x2,

and registers x2 and T . No other extra temporary memory registers are needed during

the computation. Only the registers x1, x2 and T are connected to the bi signal and

hence the others are implemented as simple registers with no shift operation. Similarly,

only the register x1 and x2 are connected to the data-bus B. Data-bus A is connected

to all the memory locations.

8.4 Performance Analysis

Based on the implementation described in the last section, we build two ECC pro-

cessors: a) with the extra register R (not a cyclic shift register) and hence fewer

multiplications and b) without the extra register R but smaller area. The implemen-

tations were synthesized for a custom ASIC design using AMI Semiconductor 0.35µm

CMOS technology using the Synopsys Design Compiler tools. Timing measurements

were done with Modelsim simulator against test vectors generated with a Java based

model.

The area requirements (in terms of equivalent gate counts) for individual units of

both the processor implementations is shown in the Table 8.4. The Controller area

differs only slightly between the implementations and we give here only for the case

without the register R. The area requirements for the Memory is given in Table 8.5

(without the extra R register) and Table 8.6 (with the extra R register). As can be

seen, memory requirements are more than 50% of the whole design. The designs have

a total area ranging from 10k equivalent gates for 113-bit field for short-term security,

to 18k for 193-bit field for high security applications.

The latency of the ECC processor in clock cycles for a single scalar multiplication is

shown in Tables 8.5 and 8.6. Since the structure is extremely simple, it can be clocked

at very high frequencies, but we present here the absolute timings at 13.56 Mhz which
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Table 8.4: F2m ECC processor area (in equivalent gates)

Field size MULT SQR ADD Controller

113 1210.58 188.38 226.00 1567.51

131 1402.46 406.00 262.00 1833.23

163 1743.58 502.00 326.00 2335.61

193 2068.38 321.98 386.00 2957.83

is normally the frequency used in RF-ID applications. We also make a comparison of

the efficiency between the two ECC processor using the area-time product (normalized

to the implementation with register R) and shown in Table 8.5. We see that the ECC

processor with the extra register has a better efficiency, and so should be the preferred

implementation if a slight area increase is acceptable.

Table 8.5: F2m ECC processor performance @13.56 Mhz without extra register R

Field size Memory Total Area Cycles Time (ms) Area-Time

113 6686.43 10112.85 195159 14.4 1.07

131 7747.17 11969.93 244192 18.0 0.99

163 9632.93 15094.31 430654 31.8 1.06

193 11400.83 17723.12 564919 41.7 1.00

Comparing the results presented here to the work in [79] (the only standardized

curve implementation for constrained devices), the clock cycles for our 193-bit size

implementation is 19% more than for the 191-bit Montgomery projective co-ordinate

algorithm, which was expected because we trade-off performance slightly to save on

area. However, the implementation is 4.4 times faster than the affine implementation

presented. The area requirements of 18k gates for our 193-bit implementation is much

smaller (22%) than the 23k gates for the 191-bit field mentioned in [79] (though the

design is slightly more versatile due the dual field multipliers used). However, as men-

tioned before, not all constrained devices require such high security and can therefore

use the smaller key size ECC processor implementations.
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Table 8.6: F2m ECC processor performance @13.56 Mhz with extra register R

Field size Memory Total Area Cycles Time (ms)

113 7439.01 10894.34 169169 12.5

131 8619.63 12883.51 226769 16.8

163 10718.49 16206.67 376864 27.9

193 12686.21 19048.22 527284 38.8

8.5 Summary

We showed here an extremely small area implementation of an ECC processor in

the affine co-ordinates. Though affine co-ordinate implementations are not normally

favored for constrained devices due to the need for an inverter, we show through the

use of an addition chain and fast squarer, they are equally good for use in low-area

implementations. Further savings are possible at the point arithmetic level by tweaking

the algorithm to save on temporary storage variables. Hence, we show that an ECC

processor implementation for four different standardized binary fields ranging from 113

to 193 bits with area requirements ranging between 10k and 18k gates, which makes

the design very attractive for enabling ECC in constrained devices. The proposed

ECC processor is also secure against timing attacks due to the regular structure of the

instructions used independent of the scalar.
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8.5 Summary

Algorithm 8.4 Instruction sequence for the Modified Montgomery method for scalar

point multiplication in F2m in affine co-ordinates

Input: P, k, where P = (x, y) ∈ E(F2m), k = [kl−1 · · · k1k0]2 ∈ Z+ and log2 k < m

Output: Q = k · P , where Q = (x1, y1) ∈ E(F2m)

1: if k = 0 or x = 0 then ReturnQ = (0, 0) and stop.

2: x1 ← x,

3: y1 ← SQR (x)

4: x2 ← INV (y1).

5: x2 ← MUL (b, x2).

6: x2 ← ADD (y1, x2).

7: for i = l − 2 downto 0 do

8: if ki = 1 then

9: x1 ← ADD (x1, x2)

10: R ← MUL (x1, x2)

11: y1 ← INV (R)

12: x1 ← MUL (y1, x1)

13: x2 ← SQR (x2)

14: y1 ← MUL (y1, x2)

15: x1 ← SQR (x1)

16: x1 ← MUL (b , x1)

17: x2 ← ADD (x1, x2)

18: x1 ← SQR (y1)

19: x1 ← ADD (y1, x1)

20: x1 ← ADD (x, x1)

21: else

22: x2 ← ADD (x1, x2)

23: R ← MUL (x1, x2)

24: y1 ← INV (R)

25: x2 ← MUL (y1, x2)

26: x1 ← SQR (x1)

27: y1 ← MUL (y1, x1)

28: x2 ← SQR (x2)

29: x2 ← MUL (b , x2)

30: x1 ← ADD (x1, x2)

31: x2 ← SQR (y1)

32: x2 ← ADD (y1, x2)

33: x2 ← ADD (x, x2)
34: end if

35: end for

36: y1 ← ADD (x, x1)

37: x2 ← ADD (x, x2)

38: x2 ← MUL (y1, x2)

39: T ← SQR (x)

40: x2 ← ADD (T , x2)

41: x2 ← ADD (y , x2)

42: x2 ← MUL (y1, x2)

43: y1 ← INV (x)

44: x2 ← MUL (y1, x2)

45: y1 ← ADD (y, x2)

46: Return (Q = (x1, y1)
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Chapter 9

Discussion

In this chapter, we summarize the findings of the thesis and give some recommendations

for future research.

9.1 Conclusions

The main focus of the thesis has been to show the feasibility of Elliptic Curve Cryptog-

raphy (ECC) in constrained devices with limited memory and computational capacity.

We were able to demonstrate a practical public-key exchange protocol using ECDH on

an 8-bit 8051 processor using special Optimal Extension Fields. The key exchange was

possible in an acceptable time, which showed the viability of ECC based protocols even

on low-end processors without the need for extra hardware. The work in [31], extends

to show that standardized prime field ECC on 8-bit processors are also possible within

acceptable timings.

Further improvements in the ECC arithmetic was shown by providing small ex-

tensions to the processor, which could drastically improve the performance. We could

show performance improvements by a factor of 30 on an 8-bit AVR processor and a

factor of 1.8 for a 32-bit MIPS processor by proposing appropriate Instruction Set

Extensions (ISE). The work in [9], shows a similar use of hardware/software co-design

for implementing an Hyperelliptic Curve Cryptographic (HECC) algorithm [44] on an

8051 microprocessor.

For the stand-alone implementations of the ECC processor, we first presented some

architectural enhancements for the Least Significant Digit-serial (LSD) multipliers,

which are the most commonly used multipliers for an area/time optimized implemen-

tation. We showed that the new architectures, the Double Accumulator Multiplier
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9.2 Future Research

(DAM) and N-Accumulator Multiplier (NAM) are both faster compared to traditional

LSD multipliers. Then we proposed an area/time efficient ECC processor architecture

for the OEFs of size 169, 289 and 361 bits, which performs all finite field arithmetic

operations in the discrete Fourier domain. A 169-bit curve implementation of the

ECC processor using the novel multiplier design required just 24k equivalent gates on

a 0.35um CMOS process. Finally we presented a highly area optimized ECC design

in ASIC, especially attractive for constrained devices. An area between 10k and 18k

gates was required on a 0.35um CMOS process for the different standardized binary

curves ranging from 133− 193 bits.

Hence, we showed different design options for enabling ECC for constrained de-

vices in the three implementation domains: low-end processor (software), extensions

for low-end processors (hardware/software co-design) and stand-alone low area ECC

processors (hardware). We found that ECC, with its relatively high computational

demands, is barely manageable for constrained processors with the help of proper

parametric choices. However, a slight extension in the processor can drastically im-

prove the performance of even standard compliant curves. This opens up a completely

new domain for low-end processors specifically suited for public-key applications. With

the stand-alone implementations, we were able to show that ECC is manageable for

constrained devices which till recently were considered to be impracticable. This allows

the use of (and design new) protocols based on public-key algorithms to be used even

for such constrained applications.

9.2 Future Research

Implementation of cryptographic systems presents several other requirements and chal-

lenges especially for constrained environments, other than the memory and area re-

quirements discussed in this thesis. Most importantly is the power and energy require-

ment for the public key algorithms. This is especially a challenge in pervasive devices

running on their own energy storage and placed in the field for long periods of time

without any maintenance or possible physical access. Also, the large number of these

devices makes replacing the batteries a highly cumbersome process. On the other hand,

RF-ID tag applications derive the required power from the electromagnetic field of the

reader to run its applications. Hence, such systems also have to be extremely power

efficient. Therefore, real world estimates of the power requirements for cryptographic

process are extremely important including systems running PKC on processors with
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extensions. The underlying arithmetic algorithms could then be chosen and fine-tuned

more efficiently for a low power ECC design.

Unlike traditional systems which cannot be physically accessed by an attacker,

pervasive systems have to also consider the physical security as they are placed in

insecure surroundings easily accessible for tampering. Therefore, storing the private

key securely on such devices are still a big challenge and the usual solutions are too

expensive for such low-cost devices.

Even when physically secured, these devices can be passively attacked using side-

channel (time and power) methods. Well known side-channel resistant algorithms

normally require almost double the execution time, large memory and more hardware

resources. Thus these measures are unsuitable for such low-end devices which require

highly optimized implementation (in time, memory and power) and therefore is an

open problem that needs to be further investigated.
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and C. Paar, editors, Cryptographic Hardware and Embedded Systems — CHES

2000, volume 1965 of Lecture Notes in Computer Science, pages 57–70, Springer-

Verlag Inc., Berlin, Germany, August 2000.

[15] P. G. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems

Journal, 29(4):526–538, 1990.

[16] R. E. Crandall. Method and apparatus for public key exchange in a cryptographic

system. U.S. Patent #5,159,632, US Patent and Trade Office, October 1992.

[17] E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem, and J. Vandewalle. A

fast software implementation for arithmetic operations in GF (2n). In K. Kim and

T. Matsumoto, editors, Advances in Cryptology—ASIACRYPT ’96, volume 1163

of Lecture Notes in Computer Science, pages 65–76, Springer-Verlag Inc., Berlin,

Germany, November 1996.

[18] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, IT-22(6):644–654, November 1976.

127



Bibliography

[19] M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Bluemel. A Reconfigurable

System on Chip Implementation for Elliptic Curve Cryptography over GF (2n).
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[53] J. López and R. Dahab. High-Speed Software Multiplication in F2m . In B. Roy

and E. Okamoto, editors, International Conference in Cryptology in India—

INDOCRYPT 2000, volume 1977 of Lecture Notes in Computer Science, pages

203–212, Springer-Verlag Inc., Berlin, Germany, December 2000.

[54] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography. The CRC Press series on discrete mathematics and its applications.

CRC Press, FL, USA, 1997.

131



Bibliography

[55] V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor,

Advances in cryptology — CRYPTO ’85, volume 218 of Lecture Notes in Computer

Science, pages 417–426, Springer-Verlag Inc., Berlin, Germany, August 1986.

[56] MIPS32 4KmTM Processor Core Datasheet. MIPS Technologies, Inc., September

2001. Available for download at http://www.mips.com/publications/index.

html.

[57] MIPS32 TM Architecture for Programmers. MIPS Technologies, Inc., March 2001.

Available for download at http://www.mips.com/publications/index.html.

[58] P. L. Montgomery. Modular multiplication without trial division. Mathematics of

Computation, 44(170):519–521, April 1985.

[59] F. Morain and J. Olivos. Speeding up the computations on an elliptic curve using

addition-subtraction chains. Theoretical Informatics and Applications, 24(6):531–

543, 1990.

[60] FIPS 186-2: Digital Signature Standard (DSS). 186-2. National Institute for

Standards and Technology, Gaithersburg, MD, USA, February 2000. Available

for download at http://csrc.nist.gov/encryption.

[61] A. M. Odlyzko. Discrete logarithms: the past and the future. Designs, Codes,

and Cryptography, 19(2-3):129–145, March 2000.

[62] OpenSSL. Available for download at http://www.openssl.org/.

[63] G. Orlando and C. Paar. A High-Performance reconfigurable Elliptic Curve Pro-
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