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Abstract We propose a novel area/time efficient ellip-
tic curve cryptography (ECC) processor architecture
which performs all finite field arithmetic operations in
the discrete Fourier domain. The proposed architec-
ture utilizes a class of optimal extension fields (OEF)
GF(qm) where the field characteristic is a Mersenne
prime q = 2n − 1 and m = n. The main advantage of
our architecture is that it achieves extension field mod-
ular multiplication in the discrete Fourier domain with
only a linear number of base field GF(q) multipli-
cations in addition to a quadratic number of simpler
operations such as addition and bitwise rotation. We
achieve an area between 25k and 50k equivalent gates
for the implementations over OEFs of size 169, 289 and
361 bits. With its low area and high speed, the proposed
architecture is well suited for ECC in small device
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environments such as sensor networks. The work at
hand presents the first hardware implementation of a
frequency domain multiplier suitable for ECC and the
first hardware implementation of ECC in the frequency
domain.
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1 Introduction

Elliptic curve cryptosystems [9, 13] are favorable
choices for asymmetric data encryption compared to
other popular algorithms such as RSA [17] mainly due
to their requirement for smaller key sizes. The same
level of security provided by a 1024-bit key in RSA
can be achieved with only a 160-bit key in elliptic curve
cryptography (ECC). The key size determines the size
of the operands over which finite field arithmetic op-
erations are performed and consequently the efficiency
of the cryptosystem [6, 12]. A comprehensive overview
for hardware implementations of RSA and ECC are
provided in Batina et al. [5].

Efficiency of an elliptic curve cryptosystem is highly
dependent on the underlying finite field arithmetic.
Multiplication in GF(qm) can be achieved with a
quadratic number of multiplications and additions in
the base field GF(q) using the classical polynomial
multiplication method. Using the Karatsuba algorithm,
this complexity can be reduced significantly, however
one still needs to do a subquadratic number of mul-
tiplications and additions in the base field GF(q).
The multiplication operation is inherently much more
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complex than other operations such as addition, there-
fore it is desirable that one performs as small a
number of base field multiplications as possible for
achieving an extension field multiplication. Discrete
Fourier transform (DFT) modular multiplication [3, 4]
achieves multiplication in GF(qm) in the frequency
domain with only a linear number of base field
GF(q) multiplications in addition to a quadratic num-
ber of simpler base field operations such as addi-
tions/subtractions and bitwise rotations. An earlier
approach for hardware implementation of large inte-
ger multiplication in the discrete Fourier domain was
proposed in Kalach and David [8]. Although no specific
implementation results in terms of timing performance
or circuit area are provided in the paper, the authors
present analytical results which show that their pro-
posed hardware multiplier architecture is more effi-
cient than multiplication with the classical method for
operand sizes of 4096 bits or longer. With our work, we
prove with our hardware implementation results that
by using the DFT modular multiplication algorithm
one can achieve efficient multiplication in the discrete
Fourier domain for much smaller operand sizes, e.g. as
small as 160 bits, relevant to ECC.

In an ECC processor the multiplier unit usually con-
sumes the most area on the chip, therefore it is crucial
that one uses an area/time efficient multiplier, particu-
larly in constrained environments, such as smart cards,
wireless sensor nodes or radio frequency identification
tags, where resources are precious. In this work we ad-
dress this issue by proposing an area/time efficient ECC
processor architecture utilizing DFT modular multipli-
cation in optimal extension fields (OEF) [1, 2] with
the Mersenne prime field characteristic q = 2n − 1 and
the extension degree m = n. Our ECC processor archi-
tecture utilizes an improved and hardware-optimized
version of the DFT modular multiplication algorithm
originally proposed in Baktır and Sunar [3, 4] and
requires an area ranging between 25k to 50k equivalent
gates for implementations over OEFs of size 169, 289
and 361 bits.

In Section 2, we provide some background infor-
mation on OEFs and multiplication in the frequency
domain. In Section 3, we overview the DFT modular
multiplication algorithm. We then present some opti-
mization ideas for efficient implementation of this algo-
rithm in hardware. In Section 4, we present an efficient
elliptic curve cryptographic processor design which uti-
lizes an optimized DFT modular multiplier architecture
over GF((213 − 1)13), GF((217 − 1)17) and GF((219 −
1)19) for an ASIC implementation using AMI Semicon-
ductor 0.35μm CMOS technology. Finally, in Section 5
we present our implementation results.

2 Mathematical background

2.1 Optimal extension fields

An extension field GF(qm) is generated by using an
mth degree polynomial irreducible over GF(q) and
comprises the residue classes modulo the irreducible
field generating polynomial. OEFs are a special class
of finite extension fields which use a field generating
polynomial of the form P(x) = xm − w and have a
pseudo-Mersenne prime field characteristic given in the
form q = 2n ± c with log2 c < � n

2 �. In OEFs the pseudo-
Mersenne prime field characteristic allows efficient
reduction in the base field GF(q) operations and the
binary field generating polynomial allows for efficient
reduction in the extension field. OEFs are found to
be successful in ECC implementations where resources
such as computational power and memory are con-
strained [10, 20]. In OEFs, the standard basis is utilized
for representing finite field elements. In this repre-
sentation, the elements of GF(qm) are represented by
polynomials of degree m − 1 with coefficients in GF(q).
For instance, an element A ∈ GF(qm) is represented as

A =
m−1∑

i=0

aixi = a0 + a1x + a2x2 + . . . + am−1xm−1

where ai ∈ GF(q). Multiplication in OEFs is performed
as follows.

Multiplication
For A, B ∈ GF(qm), the product C = A · B is com-

puted in two steps:

1) Polynomial multiplication:

C′ = A · B =
2m−2∑

i=0

c′
ix

i

2) Modular reduction:

C = C′ mod P(x)

In this paper we propose an efficient hardware architec-
ture which performs the above modular multiplication
operation in the frequency domain. For this, we need to
first represent the operands in the frequency domain.
To convert an element in GF(qm) into the frequency
domain representation, the number theoretic transform
is used, which is explained next.

2.2 Number theoretic transform

The number theoretic transform over a ring, also
known as the DFT over a finite field, was introduced by
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Pollard [15]. For a finite field GF(q) and a sequence
(a) of length d whose entries are from GF(q), the
forward DFT of (a) over GF(q), denoted by (A), can
be computed as

A j =
d−1∑

i=0

airij , 0 ≤ j ≤ d − 1 . (1)

Here we refer to the elements of (a) and (A) by ai and
Ai, respectively, for 0 ≤ i ≤ d − 1. Likewise, the inverse
DFT of (A) over GF(q) can be computed as

ai = 1

d
·

d−1∑

j=0

A jr−ij , 0 ≤ i ≤ d − 1 . (2)

We will refer to the sequences (a) and (A) as the time
and frequency domain representations, respectively, of
the same sequence. The above DFT computations over
the finite field GF(q) are defined by utilizing a dth prim-
itive root of unity, denoted by r, from GF(q) or a finite
extension of GF(q). In this work we will use r = −2 ∈
GF(q) as it enables efficient implementation in hard-
ware which will be further discussed in Section 3.3. We
will consider only finite fields GF(qm) with a Mersenne
prime characteristic q = 2n − 1 and odd extension de-
gree m = n. This makes the sequence length d = 2m,
since r = −2 is a (2m)th primitive root of unity in the
base field GF(2n − 1). In this case, when r = −2 and
q = 2n − 1, a modular multiplication in GF(q) with a
power of r can be achieved very efficiently with a simple
bitwise rotation in addition to a negation if the power is
odd. The DFT computed modulo a Mersenne prime, as
in our case, is called the Mersenne transform [16].

2.3 Convolution theorem and polynomial
multiplication in the frequency domain

A significant application of the Fourier transform is
convolution. Convolution of two d-element sequences
(a) and (b) in the time domain results in another
d-element sequence (c) and can be computed as
follows:

ci =
d−1∑

j=0

a jb i− j mod d , 0 ≤ i ≤ d − 1 . (3)

According to the convolution theorem, the above con-
volution operation in the time domain is equivalent to
the following computation in the frequency domain:

Ci = Ai · Bi , 0 ≤ i ≤ d − 1 , (4)

where (A), (B) and (C) denote the DFTs of (a), (b) and
(c), respectively. Hence, convolution of two d-element
sequences in the time domain, with complexity O(d2),

is equivalent to simple pairwise multiplication of the
DFTs of these sequences and has a surprisingly low
O(d) complexity. The DFT and its applications are
described in detail in Tolimieri et al. [19] and Burrus
and Parks [7].

Note that the summation in (3) is the cyclic convo-
lution of the sequences (a) and (b). We have seen that
this cyclic convolution can be computed very efficiently
in the Fourier domain by pairwise coefficient multipli-
cations. Multiplication of two polynomials on the other
hand is equivalent to the acyclic (linear) convolution
of the polynomial coefficients. However, if we repre-
sent elements of GF(qm), which are (m − 1)st degree
polynomials with coefficients in GF(q), with at least
d = (2m − 1) element sequences by appending zeros at
the end, then the cyclic convolution of two such se-
quences will be equivalent to their acyclic convolution
and hence give us their polynomial multiplication.

One can form sequences by taking the ordered coef-
ficients of polynomials. For instance,

a(x) = a0 + a1x + a2x2 + . . . + am−1xm−1 ,

an element of GF(qm) in polynomial representation,
can be interpreted as the following sequence after
appending d − m zeros to the right:

(a) = (a0, a1, a2, . . . , am−1, 0, 0, . . . , 0) . (5)

For a(x), b(x) ∈ GF(qm), and for d ≥ 2m − 1, the cyclic
convolution of (a) and (b) yields a sequence (c) whose
first 2m − 1 entries can be interpreted as the coeffi-
cients of a polynomial c(x) such that c(x) = a(x) · b(x).
The computation of this cyclic convolution can be per-
formed by simple pairwise coefficient multiplications in
the discrete Fourier domain.

Note that, using the convolution property the poly-
nomial product c(x) = a(x) · b(x) can be computed
very efficiently in the frequency domain but the final
reduction by the field generating polynomial is not
performed. For further multiplications to be performed
on the product c(x) in the frequency domain, it needs
to be first reduced modulo the field generating poly-
nomial. The DFT modular multiplication algorithm,
which will be mentioned briefly in the following section,
performs both polynomial multiplication and modular
reduction in the frequency domain and thus makes it
possible to perform consecutive modular multiplica-
tions in the frequency domain.

3 Modular multiplication in the frequency domain

To the best of our knowledge, the DFT modular multi-
plication algorithm [3, 4], which performs Montgomery
multiplication in GF(qm) in the frequency domain, is
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the only existing frequency domain multiplication al-
gorithm to achieve efficient modular multiplication for
operand sizes relevant to ECC. In this section, we give a
brief overview of this algorithm and the notation used.

3.1 Mathematical notation

Since the DFT modular multiplication algorithm runs
in the frequency domain, the parameters used in the
algorithm are in their frequency domain sequence
representations. These parameters are the input
operands a(x), b(x) ∈ GF(qm), the result c(x) = a(x)·
b(x) · x−(m−1) mod f (x) ∈ GF(qm), irreducible field
generating polynomial f (x), normalized irreducible
field generating polynomial f ′(x) = f (x)/ f (0), and the
indeterminate x. The time domain sequence repre-
sentations of these parameters are (a), (b), (c), ( f ),
( f ′) and (x), respectively, and their frequency domain
sequence representations, i.e. the DFTs of the time
domain sequence representations, are (A), (B), (C),

(F), (F ′) and (X). We will denote elements of a
sequence with the name of the sequence and a
subscript for showing the location of the particular
element in the sequence, e.g. for the indeterminate x
represented as the following d-element sequence in the
time domain

(x) = (0, 1, 0, 0, · · · , 0) ,

the DFT of (x) is computed as the following d-element
sequence

(X) = (1, r, r2, r3, r4, r5, . . . , rd−1) ,

whose first and last elements are denoted as X0 = 1 and
Xd−1 = rd−1, respectively.

3.2 DFT modular multiplication algorithm

DFT Modular Multiplication shown in Algorithm 1,
consists of two parts: Multiplication (Steps 1 to 3) and
Montgomery reduction (Steps 4 through 13). Multipli-
cation is performed simply by pairwise multiplication
of the two input sequences (A) and (B). This mul-
tiplication results in (C) which corresponds to c(x) =
a(x) · b(x), a polynomial of degree at most 2m − 2. For
performing further multiplications over c(x) using the
same method in the frequency domain, one needs to
first reduce it modulo f (x) so that its time domain
representation is of degree at most m − 1.

The DFT modular multiplication algorithm per-
forms reduction in the frequency domain by DFT
Montgomery reduction (Steps 4 to 13). The input to

Algorithm 1 DFT modular multiplication algorithm for
GF(qm)

Input: (A) ≡ a(x) ∈ GF(qm), (B) ≡ b(x) ∈ GF(qm)

Output: (C) ≡ a(x) · b(x) · x−(m−1) mod f (x) ∈ GF(qm)

1: for i = 0 to d − 1 do
2: Ci ← Ai · Bi

3: end for
4: for j = 0 to m − 2 do
5: S ← 0
6: for i = 0 to d − 1 do
7: S ← S + Ci

8: end for
9: S ← −S/d

10: for i = 0 to d − 1 do
11: Ci ← (Ci + F ′

i · S) · X−1
i

12: end for
13: end for
14: Return (C)

DFT Montgomery reduction is the frequency domain
sequence representation (C) of c(x) = a(x) · b(x) and
its output is the sequence (C) corresponding to c(x) =
a(x) · b(x) · x−(m−1) mod f (x) ∈ GF(qm). DFT Mont-
gomery reduction is a direct adaptation of Montgomery
reduction. In the frequency domain, the value S is com-
puted such that (c(x) + S · ( f ′(x))) is a multiple of x.
Note that (c(x) + S · ( f ′(x))) is still equivalent to c(x)

mod f (x). The algorithm then divides (c(x) + S · f ′(x))

by x and obtains a result which is congruent to c(x) ·
x−1 mod f (x). By repeating this m − 1 times (Steps 4
to 13) the initial input which is the (2m − 2)nd de-
gree input polynomial c(x) = a(x) · b(x) is reduced to
the final (m − 1)st degree result which is congruent
to a(x) · b(x) · x−(m−1) mod f (x). Hence, for the inputs
a(x) · xm−1 and b(x) · xm−1, both in GF(qm), the DFT
modular multiplication algorithm computes a(x) · b(x) ·
xm−1 ∈ GF(qm) and thus the Montgomery residue rep-
resentation is kept intact and further computations can
be performed in the frequency domain using the same
algorithm.

3.3 Optimization

In this work, we show that for the case of r = −2, odd m
and n = m, i.e. when the bit length of the field charac-
teristic q = 2n − 1 is equal to the field extension degree,
DFT modular multiplication can be optimized by pre-
computing some intermediary values in the algorithm.
Our optimization takes advantage of the fact that when
r = −2, q = 2n − 1, the field generating polynomial is
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Algorithm 2 Optimized DFT modular multiplication
in GF(qm) for r = −2, q = 2n − 1, m odd, m = n and
f (x) = xm − 2
Input: (A) ≡ a(x) ∈ GF(qm), (B) ≡ b(x) ∈ GF(qm)

Output: (C) ≡ a(x) · b(x) · x−(m−1) mod f (x) ∈ GF(qm)

1: for i = 0 to d − 1 do
2: Ci ← Ai · Bi

3: end for
4: for j = 0 to m − 2 do
5: S ← 0
6: for i = 0 to d − 1 do
7: S ← S + Ci

8: end for
9: S ← −S/d

10: Shal f ← S/2
11: Seven ← Shal f

12: Sodd ← S + Shal f

13: for i = 0 to d − 1 do
14: if i mod 2 = 0 then
15: Ci ← Ci + Seven

16: else
17: Ci ← −(Ci + Sodd)

18: end if
19: Ci ← Ci/2i

20: end for
21: end for
22: Return (C)

f (x) = xm − 2 and hence f ′(x) = − 1
2 · xm + 1, m is odd

and m = n, the following equalities hold in GF(q):

F ′
i = −1

2
· (−2)mi + 1 =

⎧
⎨

⎩

− 1
2 + 1 = 1

2 , i even

1
2 + 1 , i odd

This equality holds since

(−2)mi ≡ (−2)ni ≡ (−1)ni(2n)i ≡ (−1)ni (mod q).

Note that in this case F ′
i has only two distinct values,

namely − 1
2 + 1 = 1

2 and 1
2 + 1 for the irreducible field

generating polynomial f (x) = xm − 2. Hence, F ′
i · S in

Step 11 of Algorithm 1 can attain only two values for
any distinct value of S and these values can be precom-
puted outside the loop avoiding all such computations
inside the loop. The precomputations can be achieved
very efficiently with only one bitwise rotation and one
addition. With the suggested optimization, both the
number of base field additions/subtractions and the
number of base field bitwise rotations required to per-
form an extension field multiplication are reduced by
d(m − 1) = 2m(m − 1).

Table 1 List of parameters suitable for optimized DFT modular
multiplication

n q = 2n − 1 m d r Equivalent binary field size

13 8, 191 13 26 −2 ∼ 2169

17 131, 071 17 34 −2 ∼ 2289

19 524, 287 19 38 −2 ∼ 2361

In Algorithm 2, we present the optimized algo-
rithm for the irreducible polynomial f (x) = xm − 2. In
Table 1, we suggest a list of parameters for implemen-
tation of the optimized algorithm over finite fields of
different sizes. Note that these parameters are perfectly
suited for ECC. In Section 5, we provide the implemen-
tation results for all the finite fields listed in Table 1 and
thus show the relevance of the optimized algorithm for
area/time efficient hardware implementation of ECC in
constrained environments.

4 Implementation of an ECC processor utilizing DFT
modular multiplication

In this section we present a hardware implementation
of an ECC processor using the DFT modular multi-
plication algorithm. The DFT modular multiplication
algorithm trades off computationally expensive mod-
ular multiplication operations for simple bitwise ro-
tations which can be achieved practically for free in
hardware by proper rewiring. We exemplarily use the
field GF((213 − 1)13) to explain our design, although
the design is easily extendable for the other parameter
sizes mentioned in Table 1 and the implementation
results for all the parameter sizes are given in Section 5.

We first describe the implementation of the base
field arithmetic in GF(213 − 1) and then make para-
meter decisions based on Algorithm 2 to implement
an efficient DFT modular multiplier. Then we present
the overall processor design to compute the ECC scalar
point multiplication operation.

4.1 Base field arithmetic

Base field arithmetic consists of addition, subtrac-
tion (addition with a negation) and multiplication in
GF(213 − 1). The arithmetic architectures are designed
to ensure area/time efficiency.

Base Field Addition
Addition in the base field is implemented using a ripple
carry adder. Reduction with the Mersenne prime q =
213 − 1 is just an extra addition of the carry generated.
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Fig. 1 Base field addition architecture

This additional addition is always hard wired, indepen-
dent of the value of the carry, to avoid any timing
related attacks. Figure 1 shows the design of the base
field adder built using half adders and full adders.

Base Field Negation
Negation in the base field is extremely simple to imple-
ment with a Mersenne prime q as the field character-
istic. Negation of B ∈ GF(q) is normally computed as
B′ = q − B. However, when q is a Mersenne prime, it is
easy to see from the binary representation of q = 213 −
1 (which is all 1’s) that this subtraction is equivalent to
flipping (NOT) of the bits of B. Hence, subtraction in
this architecture can be implemented by using the adder
architecture with an additional bitwise NOT operation
on the subtrahend.

Base Field Multiplication
Base field multiplication is a 13 × 13-bit integer mul-
tiplication followed by a modular reduction with q =
213 − 1. Since q is a Mersenne prime, an efficient way
to implement this operation is to do an integer mul-
tiplication with interleaved reduction. Figure 2 shows
the design of our base field multiplier architecture. It
consists of the multiplication core (which performs the
integer multiplication with interleaved reduction of the
carry) and a reduction unit for the final reduction of the
result which is performed using a ripple carry adder.

The processing cell of the multiplier core, which is
shown in Fig. 3, is built with a full adder. Here, ai and
bi represent the inputs, cai represents the carry, and i
and k are the column and row numbers, respectively,
in Fig. 2.

4.2 Polynomial multiplier

Finite field multiplication of polynomials in an exten-
sion field, with coefficients in the base field as described
in Section 2.1, is computed using a polynomial multi-
plier. Using an extension field GF(qm), we can reduce
the area of a finite field multiplier in a very natural way,

Fig. 2 Base field multiplication with interleaved reduction

since in this case only a smaller base field multiplier is
required. For instance, for performing multiplication in
GF((213 − 1)13) we would only need a 13 × 13-bit base
field multiplier. However, an implementation in the
time domain has the disadvantage of having a quadratic
time complexity, because a total number of 13 × 13 =
169 base field multiplications need to be computed. In
our design, we save most of these base field multipli-
cations by utilizing DFT modular multiplication which
requires performing only a linear number of 26 base
field multiplications (Steps 1 − 3, Algorithm 2).

DFT Modular Multiplication
For the application of DFT modular multiplication,
Algorithm 2 is modified for an optimized hardware

Fig. 3 Processing cell for
the base field multiplier core
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implementation. The main design decision here is to
use a single base field multiplier to perform Step 2
(for pairwise coefficient multiplications) and Step 9
(for multiplications with the constant −1/d). Next,
the two loops Steps 6 − 8 (for accumulating Ci’s) and
Steps 13 − 20 (for computing Ci’s) were decided to be
performed in parallel simultaneously. The final design
that emerged is as shown in Fig. 4 and the functional-
ity is represented by the pseudo-code in Algorithm 3.
During Steps 2 − 5 (Algorithm 3) the multiplexer se-
lect signal red is set to 0 and later it is set to 1 for
the remaining steps. This allows MUL (the base field
multiplier) to be used for the initial multiplication, with
the proper results accumulated in the register S. The
registers Seven and Sodd cyclically rotate their contents
every clock cycle performing Steps 17 and 18 (Algo-
rithm 3), respectively.

Step 19 in Algorithm 2, which involves different
amounts of cyclic rotations for different Ci, would nor-
mally be inefficient to implement in hardware. In this
work, this problem is solved in a unique way with the

Algorithm 3 Pseudo-code for hardware implementa-
tion of DFT modular multiplication
Input: (A), (B)

Output: (C) ≡ a(x) · b(x) · x−(m−1) mod f (x)

1: S ← 0
2: for i = 0 to d − 1 do
3: Ci ← Ai · Bi

4: S ← S + Ci

5: end for
6: for j = 0 to m − 2 do
7: S ← −S/d
8: Seven ← S/2
9: Sodd ← S + S/2

10: S ← 0
11: for i = 0 to d − 1 do
12: if i mod 2 = 0 then
13: Ci ← Ci + Seven

14: else
15: Ci ← −(Ci + Sodd)

16: end if
17: Seven ← Seven/2
18: Sodd ← Sodd/2
19: for k = i + 1 to d − 1 do
20: Ck ← Ck/2
21: end for
22: S ← S + Ci

23: end for
24: end for
25: Return (C)

first-in first-out (FIFO) cyclic register block. This tem-
porary memory location for storing Ci values pushes
in values till it is completely full. In the next loop,
as the values are moved out of the FIFO, each of
them is cyclically rotated at each clock cycle as they
move up. Hence the different Ci values are cyclically
rotated by different number of bits with no extra cost.
The pseudo-code which shows the functionality of the
memory block is given in Steps 19 − 21 of Algorithm 3.
Steps 14 − 18 (Algorithm 2) are implemented using the
two multiplexers with the select signal o_e.

Thus, based on an iterative study of different ar-
chitectures we investigated, in this work we show the
steps of the original DFT modular multiplication algo-
rithm (Algorithm 1), reordered so as to fine tune it to
generate a hardware efficient architecture. Due to its
regular design, the DFT modular multiplier architec-
ture is easy to layout. The area is optimized by reusing
the various components. Also, since all the bus signals
are 13-bits wide, signal routing is made extremely easy
in the design.

4.3 Point arithmetic

The overall architecture of the ECC processor is shown
in Fig. 5. The Arithmetic Unit consists of the DFT
modular multiplier, and the base field adder which has
a negation unit on one of its inputs for performing
also the subtraction. All the necessary point variables
are stored in the Memory component. We use FIFO
registers here, because DFT modular multiplication
and addition/subtraction operate only on 13 bits of the
data at each clock cycle. This enables our processor to
use 13-bit wide buses throughout the design, resulting
in easy routing with reduced power consumption. To
avoid losing the contents of the memory when being
read out, they are looped back in the FIFO block, if
new values are not being written in.

The Control Unit is the most important component
which performs the point arithmetic by writing the
required variables onto the A and B busses, performing
the required operations on them and storing the result
back to the proper memory register. The Control Unit is
also responsible for interacting with the external world
by reading in inputs and writing out the results. The
instruction set of the Control Unit is given in Table 2.

The ECC point arithmetic is performed using mixed
Jacobian-affine coordinates [12] to save area on in-
version. Here, we assume the elliptic curve is of the
form y2 = x3 − 3x + b . We use the binary NAF method
(Algorithm 3.31 in Menezes et al. [12]) with mixed
coordinates to perform the point multiplication. The
point arithmetic is performed in such a way that the
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Fig. 4 DFT modular
multiplier architecture
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1
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FIFO
cyclic

register
block

MUL

red

red

-1/d

 Ai

Bi

S

10

10

least amount of temporary storage is required. Since
the point multiplication algorithm allows overwriting
of the inputs while performing point doubling and
addition, it requires only three extra temporary mem-
ory locations. The point doubling operation is per-
formed in Jacobian coordinates and requires 8 DFT
modular multiplications and 12 sequence additions (or
subtractions). Point addition is performed in mixed
Jacobian-affine coordinates and requires 11 DFT mod-
ular multiplications and 7 additions. Point subtraction
(for the binary NAF method) is easily implemented

in exactly the same way as point addition with the
exception of flipping the bits of y2, the y-coordinate
of the point to be subtracted. The Memory unit there-
fore consists of eight FIFO register blocks, one for
each sequence, and has the total size of 26 × 13 × 8 =
2704 bits.

The inversion operation required for the final con-
version from projective to affine coordinates is per-
formed using Fermat’s Little Theorem. The conversion
from the time to the frequency domain, and vice-versa,
is achieved by simple rotations which are performed

Fig. 5 Top level ECC
processor architecture
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Table 2 Controller commands of ECC processor

Command Action

LOAD [addr] Load data into the register [addr]
READ [addr] Read data from the register [addr]
DFT_MULT [addrA] [addrB] [addrC] Perform DFT modular multiplication on the sequences in [addrA] and [addrB], and store the

result in [addrC]
ADD_SEQ [addrA] [addrB] [addrC] Perform base field addition on the sequences in [addrA] and [addrB], and store the result

in [addrC]
SUB_SEQ [addrA] [addrB] [addrC] Perform base field subtraction on the sequences in [addrA] and [addrB], and store the result

in [addrC]
MOVE_SEQ [addrA] [addrB] Move data from the register [addrA] to the register [addrB]
DFT_SEQ [addr] Convert the data sequence at [addr] to the frequency domain
TIME_SEQ [addr] Convert the data sequence at [addr] to the time domain

Table 3 Equivalent gate
count areas for the ECC
processor

Field Arithmetic unit Control unit Memory Total area

GF((213 − 1)13) 5, 537.06 351.26 18, 768.66 24, 754.62
GF((217 − 1)17) 6, 978.95 362.56 31, 794.52 39, 243.00
GF((219 − 1)19) 10, 898.82 362.89 39, 586.72 50, 959.02

Table 4 Timing measurements (in clock cycles) for the ECC processor

Field DFT multiplication Point double Point addition Max. frequency (MHz) Point multiplication (avg. ms)

GF((213 − 1)13) 354 3, 180 4, 097 238.7 3.47
GF((217 − 1)17) 598 5, 228 6, 837 226.8 10.33
GF((219 − 1)19) 744 6, 444 8, 471 221.7 16.34

Table 5 Comparisons with other ECC processors for similar application scenarios

Implementation Field size (equiv. binary) Area (equiv. kgates) Max. frequency (MHz) Point multiplication (avg. ms)

Lee et. al. [11] ∼ 2217 228 26 11
Öztürk et. al. [14] ∼ 2165 30 100 6.3
Satoh and Takano [18] ∼ 2160 28 364 7.5

Ours ∼ 2169 24.8 238.7 3.47

∼ 2289 39.2 226.8 10.33
∼ 2361 50.9 221.7 16.34
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using the FIFO cyclic register block inside the DFT
modular multiplier unit.

5 Performance analysis

In this section, we present the implementation results
for the ECC processor design for three different finite
fields: GF((213 − 1)13), GF((217 − 1)17) and GF((219 −
1)19). For our performance measurements, we synthe-
sized for a custom ASIC design using AMI Semicon-
ductor 0.35μm CMOS technology using the Synopsys
Design Compiler tools. Timing measurements were
performed using the Modelsim simulator against test
vectors generated with Maple.

Table 3 shows the area requirements for the
ECC processor in terms of the equivalent number
of NAND gates. The areas required for each of the
three main components of the processor are also
shown individually.

Table 4 presents the number of clock cycles required
for DFT modular multiplication and ECC point arith-
metic. It also shows the maximum clock frequency of
the processor and the total time required to perform a
point multiplication.

Although there are numerous ECC hardware imple-
mentations which are openly available in the literature,
in Table 5 we attempt to compare our results only
to VLSI implementations of ECC oriented towards
similar application scenarios requiring small area with
moderate speed. To the best of our knowledge, the
only OEF implementation in hardware is presented
by Lee et al. [11]. The authors present an FPGA im-
plementation of ECC over GF(qm), where q = 231 − 1
and m = 7, which is comparable to our implementation
over GF((217 − 1)17). The best design mentioned here
has a gate count of 228k and performs a scalar point
multiplication in 11 ms at a maximum possible clock
frequency of 26 MHz. The huge area is due to the
inversion unit that is used as an alternative to the
projective coordinates used in our design. This leads to
our design being a factor of 5.8 smaller than the only
known OEF hardware implementation but still being
able to provide the same timing performance.

We would like to compare our results also to ECC
implementations over other fields for similar applica-
tions. An implementation of ECC over the prime field

GF((2167 + 1)/3), which has a comparable key length
with our implementation over GF((213 − 1)13), is pre-
sented in Öztürk et al. [14]. This design occupies an
area of around 30k gates and achieves a point multi-
plication in 6.3 ms at 100 MHz clock frequency. Our
design is 20% smaller than this design and still effi-
cient in performance. Finally, we compare our design
to the scalable dual-field based implementation pre-
sented by Satoh and Takano [18]. For the 160-bit field
size, this implementation has an area of 28k gates and
achieves a point multiplication in 7.5 ms at the maxi-
mum clock frequency of 364 MHz. Our implementation
over GF((213 − 1)13), with the same field size, is more
efficient in terms of both area and time. Based on these
observations, we can easily confirm that the proposed
implementation is area efficient without compromising
on speed.

6 Conclusion

We have proposed a novel hardware architecture for
DFT modular multiplication, and also presented an
ECC processor architecture to perform point multipli-
cation in the frequency domain using this multiplier.
This is the first ever hardware implementation of ECC
in the frequency domain, and we hope further research
using other point multiplication algorithms applied to
this architecture would lead to new results such as side
channel resistance. We have synthesized our architec-
ture for custom VLSI CMOS technology to estimate
the area and time performance, and shown that the pro-
posed ECC processor is time/area efficient and useful
in resource constrained environments such as sensor
networks.
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