
Finite Field Multipliers for Ultra-Constrained

Environments?

Jorge Guajardo1, Tim Kerins2??, Sandeep S. Kumar1, and Pim Tuyls1

1 Philips Research Laboratories, Eindhoven, The Netherlands

{Jorge.Guajardo,Sandeep.Kumar,Pim.Tuyls}@philips.com
2 Dept. Electrical and Electronic Engineering, University College Cork, Ireland

timk@rennes.ucc.ie

Abstract. This work introduces a new finite field multiplier based on
a modification of the standard Most Significant Digit Element (MSDE)
first multiplier introduced in [25]. The modification results in a slight
improvement in the area complexity of the multiplier when compared
to the work in [5] and in a significant reduction in the critical path of
the multiplier. We provide estimates for the area and time complexities
of the multiplier. We conclude that the presented design is well suited
for implementations of ECC that target ultra-constrained environments
such as RFID tags and sensor nodes.

Key Words: finite fields, elliptic curve cryptography, small area imple-
mentations, RFID, sensor nodes

1 Introduction

In recent years, we have seen the widespread development of technolo-
gies which in one way or another will enable the next revolution after
the Internet: the Internet of Things. Examples of such technologies are
Radio Frequency Identification (RFID) systems and (ad-hoc) sensor net-
works. RFID technology is an enabler for applications such as [16]: goods
tracking in supply chain management, automated inventory management,
automated quality control, access control, and payment systems, but also
applications deriving from the interaction of tagged objects with intel-
ligent devices in the home and our surroundings (intelligent refrigera-
tors, washing machines, intelligent posters, etc.). Sensor networks have
wide range of applications [9] such as surveillance, distributed disaster
management systems, emergency response, habitat and environmental

? Presented at the 2nd Benelux Workshop on Information and System Security —
WISSEC 2007, September 20-21, 2007, Luxembourg city, Luxembourg.

?? Work done while the author was at Philips Research.

monitoring, and monitoring of interactions in wildlife, health-care, and
manufacturing process flow.

Such applications give rise to a series of security problems which could
be roughly divided into two groups: entity authentication (is node A for-
warding the right information? is this an authentic tag?) and privacy
(is reader X allowed to access the data stored in tag B? Is an external
node allowed to listen in on communication in a private network?). Such
problems have forced researchers to develop numerous solutions as Juels
[16] describes in the context of RFID systems and Chan and Perrig [8] in
the context of sensor networks. In the beginning, many of the proposed
solutions were based on new protocols and primitives. In particular, tra-
ditional cryptographic primitives were not considered feasible because of
their area cost and power consumption. However, recently there has been
renewed interest in investigating the feasibility of public-key cryptogra-
phy and, in particular, elliptic curve cryptography (ECC) engines for such
constrained environments as RFID [3,4] and sensor nodes [5].

It is well known that any elliptic curve engine is composed of memory,
control logic and an arithmetic logic unit (ALU), whose largest compo-
nent is a finite field multiplier. In fact, there is a large body of research on
finite field multipliers already. For example, characteristic two field archi-
tectures have been considered extensively, probably due to the straight
forward manner in which elements of F2 can be represented, i.e., they can
be represented by the logical values “0” and “1”. In recent years, Fpm

fields, where p is odd, have also gained interest in the research commu-
nity. Mihălescu [18] and independently Bailey and Paar [1] introduced
the concept of Optimal Extension Fields (OEFs) in the context of ellip-
tic curve cryptography. OEFs are fields Fpm where p is odd and both p
and m are chosen to match the particular hardware used to perform the
arithmetic, thus allowing for efficient field arithmetic. Generalizations [2]
and hardware architectures for such fields have also appeared in the liter-
ature [22,6,7]. Interestingly enough, all previous architectures have been
optimized for either the time-area product metric or for performance (i.e.
time) as these have been the parameters that designers traditionally look
at. In this paper, we propose a somewhat different approach as area3 is a
fundamental constraint in both RFID systems and sensor networks. Thus,
we revisit digit-serial multipliers and investigate ways to minimize their
area requirements. Interestingly enough we come up with new digit-serial

3 Power dissipation is also a key metric in RFID and sensor networks but in this
paper we do not discuss it. However, notice that generally smaller area circuits tend
to dissipate less power.

2

multipliers with reduced area requirements and improved critical path.
Our key observation is that the modular reduction circuit can be placed
in a different place in the multiplier giving a slight improvement in area
and with a minor impact on the critical path of the architecture when
compared to standard digit multipliers [25]. Compared to the work in [5],
we improve both the area and the critical path.

The remainder of the paper is organized as follows. Section 2 gives
a brief overview of related work. We briefly review digit multipliers and
their complexity in Sect. 3. In Sect. 4, we introduce our new multiplier
design aimed at reducing area, analyze its complexity and compare it
to the architecture of [5], which is the smallest multiplier design known
in the literature while still achieving acceptable performance. Finally, in
Sect. 5 we provide conclusions and point out future work.

2 Related Work

2.1 Previous Finite Field Multipliers

For fixed irreducible polynomials, there are three different types of ar-
chitectures used to build Fpm multipliers: array-, digit-, and parallel-
multipliers [25]. Parallel multipliers process all coefficients of both operands
at once and generate all the coefficients of the result at the same time.
Parallel multipliers (see for example, [21,26,11]) have a high critical path
delay but only require one clock cycle to complete a whole multiplica-
tion. Thus, parallel multipliers exhibit high throughput and they are best
suited for applications requiring high speed. However, they are expensive
in terms of area when compared to serial multipliers and most of the time
prohibitive for cryptographic applications. Thus, they are not considered
any further in this work. Array-type (or serial) multipliers process all
the coefficients of the multiplicand in parallel in the first step, while the
coefficients of the multiplier are processed serially. Array-type multipli-
cation can be performed in two different ways, depending on the order
in which the coefficients of the multiplier are processed: Least Signifi-
cant Element (LSE) first multiplier and Most Significant Element (MSE)
first multiplier. Digit-multipliers, introduced by Song and Parhi [25], are
a generalization of serial multipliers which process more than one coef-
ficient of the multiplicand at the time. They are also divided into Most
Significant and Least Significant Digit Element first multipliers, depend-
ing on the order in which the coefficients of the polynomial are processed.
Notice that if the digit size is set to one, a digit multiplier becomes a
serial multiplier.

3

Kumar et al. [17] have recently presented optimum digit sizes for high
speed implementations of Digit-serial multipliers. They show that digit
sizes of the form 2l−1, where l is an integer, have smaller critical path and
area-time product. They also present different Digit-serial multiplier ar-
chitectures based on the number of accumulators in the multiplier. Thus,
the Double-Accumulator Multiplier (DAM) and N-Accumulator Multi-
plier (NAM) are described in [17]. They show that these multipliers pro-
vide different optimum choices for area-time product, enabling designers
to choose the best optimum multiplier for a given timing requirement.
Notice that additional accumulators in multipliers imply additional regis-
ter resources and thus, higher area requirements than those of traditional
digit multipliers.

For arbitrary irreducible polynomials, there is also a broad litera-
ture (see for example [23,15,10]). However, it is our opinion that for
ultra-constrained environments such as RFID tags and sensor nodes, such
methodologies are too expensive and provide a level of functionality that
it is unnecessary for the application. Thus, we focus on fixed irreducible
polynomial multipliers in the remainder of this paper.

Although small area architectures for finite field multipliers have not
been extensively considered on their own, applications such as ECC for
extremely constrained environments have been considered in the litera-
ture. Thus, we surveyed this literature as well.

2.2 ECC for Constrained Environments

Low-power and compact implementations became an important research
area with the constant increase in the number of hand-held devices such
as mobile phones, smart cards, PDAs etc. Schroeppel et al. [24] pre-
sented a design for ECC over binary fields that was optimized for power,
space and time in order to provide digital signatures. The processor in
[24] had an area complexity of 191,000 gates. From these, the multiplier
over the composite field F2178 required 6200 gates. The work of Good-
man and Chandrakasan [13] also dealt with energy-efficient solutions.
They proposed a domain-specific reconfigurable cryptographic processor
(DSRCP) for ECC over prime and binary finite fields. No details are pro-
vided about the resources required by the multiplier. Özturk et al. [20]
introduced modulus scaling techniques that are applicable for ECC over
a prime field to develop a low-power elliptic curve processor architecture.
They obtained an ECC processor over a 166-bit long prime of size 30,333
gates with a performance of 31.9 msec for point multiplication. In [12],

4

Gaubatz et al. compared implementations of Rabin’s scheme and NTRU-
Encrypt with an ECC solution for wireless sensor networks. The ECC
processor occupied an area of 18,720 gates and used a prime field of order
≈ 2100.

RFID-based identification is an example of an emerging technology
which requires authentication as a cryptographic service. Recently, Wolk-
erstorfer [27] showed that ECC based PKC is feasible on RFID-tags by
implementing the ECDSA on a small IC. This work is the first complete
ECC low-power and compact implementation that meets the constraints
imposed by the EPC standard. Following, this line of work, Batina et al.
[3,5,4] have also presented architectures for small arithmetic units suited
for RFID and sensor networks. In [3,4], the authors investigate different
trade-offs that can be made in an ALU suited for implementing ECC over
F2m . Their ALU consists of an MSD multiplier, a squarer and an adder. A
3-to-1 multiplexer allows to select the result depending on whether a mul-
tiplication, an addition, or a squaring operation is desired. The smallest
design in [4] required 6306 gates for an ALU suited to F2131 . In [5], the
authors proposed an ALU without a squarer. In particular, they com-
bine a MSD multiplier with the ability to perform addition without a
big hardware overhead. One key observation in this architecture is that
multiplexers can be substituted for AND gates and flip-flops with a load
input. We will discuss the design in more detail in Sect. 3.

3 Digit-Serial Multipliers for Fpm

3.1 Notation

In the following, we will consider the field Fpm generated by an irreducible

polynomial over Fp of degree m, q(x) = xm+Q(x) = xm+
∑k

i=0 qix
i, k <

m. We assume α to be a root of q(x), thus for A, B, C ∈ Fpm , we write
A =

∑m−1
i=0 aiα

i, B =
∑m−1

i=0 biα
i, C =

∑m−1
i=0 ciα

i, and ai, bi, ci ∈ Fp.
Notice that by assumption q(α) = 0 since α is a root of q(x). Therefore,

αm = −Q(α) =
k
∑

i=0

(−qi)α
i (1)

gives an easy way to perform modulo reduction whenever we encounter
powers of α greater than m−1. Addition in Fpm can be achieved as shown
in (2)

C(α) ≡ A(α) + B(α) =
m−1
∑

i=0

(ai + bi)α
i (2)

5

where the addition ai + bi is done in Fp. Multiplication of two elements
A, B ∈ Fpm is written as C(α) =

∑m−1
i=0 ciα

i ≡ A(α) · B(α), where the
multiplication is understood to happen in the finite field Fpm and all
αt, with t ≥ m can be reduced with (1). We will abuse our notation
and throughout the text we will write A mod q(α) to mean explicitly the
reduction step described previously. We will refer to A as the multiplicand
and to B as the multiplier. Finally, notice that although our treatment is
general (for any characteristic), we are particularly interested in binary
fields for our particular application setting: ECC on ultra-constrained
environments such as RFID and sensor nodes.

3.2 LSDE and MSDE Multipliers

Digit multipliers, introduced in [25] for fields F2k , are a trade-off between
speed, area, and power consumption. This is achieved by processing sev-
eral of the multiplier’s (B) coefficients at the same time. The number of
coefficients that are processed in parallel is defined to be the digit-size
and we denote it with the letter D.

For a digit-size D, we can denote by d = dm/De the total number
of digits in a polynomial of degree m − 1. Then, we can re-write the
multiplier as B =

∑d−1
i=0 Biα

Di, where

Bi =
D−1
∑

j=0

bDi+jα
j , 0 ≤ i ≤ d− 1 (3)

and we assume that B has been padded with zero coefficients such that
bi = 0 for m − 1 < i < d · D (i.e. the size of B is d · D coefficients but
deg(B) < m). Hence,

C ≡ AB mod q(α) = A

d−1
∑

i=0

Biα
Di mod q(α) (4)

In the following, we revisit digit-serial/parallel multiplication algorithms.
These algorithms are classified as Least Significant Digit-Element first
multiplier (LSDE) and Most Significant Digit-Element first multiplier
(MSDE). Here, we have used the word element as in [6] to clarify that
the digits correspond to groups of Fp coefficients in contrast to the binary
case where the digits are groups of bits [25]. Using (4), the product in
this scheme can be calculated as follows

C ≡ AB ≡ [B0A+B1(AαD mod q(α))+. . .+Bd−1(AαD(d−2)αD mod q(α))] mod q(α)
(5)

6

Algorithm 1 LSDE Multiplier

Require: A =
∑m−1

i=0 aiα
i, where ai ∈ Fp, B =

∑d m
D

e−1

i=0 Biα
Di, where Bi is as defined

in (3)
Ensure: : C ≡ A ·B =

∑m−1
i=0 ciα

i, where ci ∈ Fp

1: C ← 0
2: for i = 0 to dm

D
e − 1 do

3: C ← BiA + C

4: A← AαD mod q(α)
5: end for

6: Return (C mod q(α))

This is summarized in Algorithm 1. A similar derivation can be per-
formed for MSDE multipliers resulting in Algorithm 2. Notice that in

Algorithm 2 MSDE Multiplier

Require: A =
∑m−1

i=0 aiα
i, where ai ∈ Fp, B =

∑d−1
i=0 Biα

Di, where Bi is as defined
in (3)

Ensure: C ≡ A ·B =
∑m−1

i=0 ciα
i, where ci ∈ Fp

1: C ← 0
2: for i = 0 to d− 1 do

3: C ← ABd−1−i + (C mod q(α))αD

4: end for

5: Return (C mod q(α))

both LSDE and MSDE multipliers, the intermediate result C is of degree
larger than m = deg(q(α)). This fact translates into two consequences: (i)
both LSDE and MSDE multipliers require a number of storage elements
which is larger than the degree of the irreducible polynomial q(α) and (ii)
after d loop iterations, one must perform one extra reduction. In a LSDE
multiplier, products of the form WαD mod F (α) occur (as seen in Step 4
and 3 of Algorithms 1 and 2, respectively) which have to be reduced. As
in the serial multiplier case, one can derive equations for the modular
reduction for general irreducible F (α) polynomials. However, as shown
in [25,6], it is more interesting to search for polynomials that minimize
the complexity of the reduction operation. We recall two theorems in [25]
which define these optimum irreducible polynomials.

Theorem 1. [25] Given an irreducible polynomial of the form q(α) =
αm + qkα

k +
∑k−1

j=0 qjα
j, with k < m. For t ≤ m − 1 − k, αm+t can be

7

reduced to degree less than m in one step with the following equation:

αm+t mod q(α) = −qkα
k+t −

k−1
∑

j=0

qjα
j+t (6)

Theorem 2. [25] For digit multipliers with digit-element size D, when
D ≤ m−k, the intermediate results in Algorithms 1 and 2 can be reduced
to degree less than m in one step.

Theorems 1 and 2 implicitly say that for a given irreducible polynomial
q(α) = αm + qkα

k +
∑k−1

j=0 qjα
j , the digit-element size D has to be chosen

based on the value of k, the second highest degree in the irreducible poly-
nomial. The architectures of the LSDE and MSDE multipliers are shown
in Fig. 1 and 2. From Fig. 1, we can identify the following components

Fig. 1. F2m LSDE multiplier Fig. 2. F2m MSDE multiplier

for the LSDE multiplier:

1. The multiplier core which computes the intermediate BiA + C and
stores it in the accumulator.

2. The main reduction circuit to shift A left by D and reduce the result
mod q(α).

3. The final reduction circuit to reduce the contents in the accumulator
to get the final result C.

8

4. A 2-to-1 m coefficient MUX which selects between the original input
A and the updated A

Similarly, from Fig. 2, we can identify the following components:

1. The multiplier core which computes BiA + C.

2. The main reduction circuit to shift the intermediate result C and
reduce the result mod q(α).

3. The final reduction circuit to reduce the contents in the accumulator
to get the final result C.

All the components run in parallel requiring one clock cycle to complete
each step. The critical path of the whole multiplier normally depends
on the critical path of the multiplier core. We notice that the design in
[5] is also based on a MSDE multiplier (for binary fields). However, it
has certain characteristics which makes it interesting and innovative. The
authors are able to use an m coefficient (resp. bit) register instead of a
m+D−1 coefficient register by performing a modular reduction for every
coefficient (of the digit Bi) multiplication in the digit-multiplier core. The
multiplier has a modular design and it is composed of identical cells. Each
cell performs the operation C(i) ←

(

C(i−1) + biA mod p(α)
)

α. Thus, for
a digit D they have D cells and D reduction circuits. This architecture is
very similar to the folded MSDE multiplier of [25]. Batina et al. further
minimize the size of the overall ALU by allowing the accumulator register
C to have a load input and taking advantage of the fact that if C is loaded
with an initial value I, then we obtain an adder for free without extra
hardware4.

We do not provide here an analysis of the area requirements and the
critical path of the different components of the multiplier. Rather, we refer
to [25,14,17] for such an analysis. Table 1 summarizes the area require-
ments and time complexity of known F2m digit multipliers. We estimate
the area in terms of AND gates, XOR gates, single-bit Flip-Flops, and
(2:1)-bit MUXes. The number of XORs and the critical path is based on
the assumption that a binary tree structure is used to add the required
elements and that a known fixed irreducible polynomial is used (thus,
the modular reduction circuit is composed of only XOR gates). For n
elements, the number of XOR gates required is n−1 and the critical path
delay becomes the binary tree depth dlog2 ne. We calculate the critical
path as a function of the delay of XORs (∆XOR), AND gates (∆AND),

4 The observation that we can calculate A ·B + I for “free” first appears in [19] in the
context of ECC processors.

9

and MUXes (∆MUX). This allows our analysis to be independent of the
cell-technology and field used for the implementation. Notice that we do
not make any assumptions about the form of the irreducible polynomial
(whether it is a trinomial, pentanomial, etc.) chosen to perform the reduc-
tion operation. However, we do assume that the irreducible polynomial
is known ahead of time, implying that the modular reduction operation
requires only XORs. This also implies that these complexities are upper
bounds. We do not include the multiplier of [17] in Table 1 because it
requires more hardware resources than those presented by others.

Table 1. Area complexity and critical path delay of digit multipliers over
F2m . Digit size D and fixed p(α) satisfying Theorem 1.

Multiplier Circuit Area Critical Path Latency
Type Complexity Delay (# clocks)

AND XOR MUX FF

LSDE [25] Shift-register B – – – m dlog2(D + 1)e dm/De + 1−
ABi + C mD mD – – ∆XOR+ δ(1, D)
A mod q(α) – kD m m ∆AND+
Accumulator C – – – m + D − 1 ∆MUX
Final reduction – (k+1)(D−1) – –
Overall mD D(m + 2k +

1) − (k + 1)
m 3m + D − 1

MSDE [25] Shift-register B – – – m dlog2(2D + 1)e dm/De + 1−

ABd−1−i + (C mod q(α))αD mD (m + k)D – – ∆XOR+ δ(1, D)
Accumulator C – – – (m + D) ∆AND
Final reduction – (k+1)(D−1) – –
Overall mD D(m + 2k +

1) − (k + 1)
2m + D

MSDE [5] Shift-register B – – – m 2D∆XOR+ dm/De
Accumulator C – – – m ∆AND
D cells computing mD + D D(m + k + 1) – –
bjAα mod p(α)
Overall D(m + 1) D(m + k + 1) – 2m

4 Improved Digit Multipliers

4.1 Idea

We recall the Step 3 of Algorithm 2 in (7), which is the step that is
performed in every iteration of the algorithm.

C ← ABd−1−i + (C mod q(α))αD (7)

We notice that (7) can be re-written as (8), where we have made used
of the fact that the modular reduction operation is commutative with
addition and multiplication operations in the field of definition.

C ←
(

ABd−1−i + CαD
)

mod q(α) (8)

10

Algorithm 3 Modified MSDE Multiplier

Require: A =
∑m−1

i=0 aiα
i, where ai ∈ Fp, B =

∑d−1
i=0 Biα

Di, where Bi is as defined
in (3)

Ensure: C ≡ A ·B =
∑m−1

i=0 ciα
i, where ci ∈ Fp

1: C ← 0
2: for i = 0 to d− 1 do

3: C ←
(

ABd−1−i + CαD
)

mod q(α)
4: end for

Using (8), we can re-write Algorithm 2 as Algorithm 3. Notice that now
deg(C) < m, in every iteration of the algorithm. Algorithm 3 implies
the multiplier shown in Figure 3 for the particular case of a binary field.
Notice that Algorithm 3 does not require the last modular reduction in

Fig. 3. Modified MSDE multiplier in F2m

Algorithm 2 thus resulting in an area complexity advantage. However,
when compared to the work in [5], it is not clear if there are any advan-
tages. Thus, we analyze the complexity of the multiplier next.

11

4.2 Area-Time Complexity for Optimal Irreducible

Polynomials over F2m

Before estimating the complexity of the modified MSDE multiplier, it is
helpful to obtain equations to describe the values of C at iteration i in
Algorithm 3. Thus, assume that Bi is as in (3), q(α) = αm +

∑k
s=0 qsα

s

(Theorem 1), A =
∑m−1

i=0 aiα
i, and D ≤ m − k (Theorem 2). We also

define intermediate variables C ′ and E. Then,

C ′(i) =
m+D−1
∑

j=0

c
′(i)
j αj = E(i) + C(i−1)αD

= c
(i−1)
m−1 αm+D−1 +

m+D−2
∑

j=D

(

e
(i)
j + c

(i−1)
j−D

)

αj +
D−1
∑

j=0

e
(i)
j αj (9)

C(i) = C ′(i) mod p(α) =
m−1
∑

j=0

c
′(i)
j αj +

k
∑

s=0

D−1
∑

j=0

(

−qs · c
′(i)
j+m

)

αj+s (10)

where C(−1) = 0 and

E(i) =
m+D−2
∑

j=0

e
(i)
j αj = Bd−1−i ·A =

m−1
∑

j=0

ajα
j

(

D−1
∑

s=0

bD(d−1−i)+sα
s

)

=
m−1
∑

j=0

D−1
∑

s=0

(

aj · bD(d−1−i)+s

)

αj+s (11)

For the particular case of F2m , the above implies the following:

– It follows from (9) that to compute the intermediate result C ′ we
require m− 1 XOR gates.

– It follows from (11) that in each iteration one requires mD AND gates
in parallel and

∑D−2
j=0 j+

∑m−1
j=D−1(D−1)+

∑m+D−2
j=m (m+D−2−j) =

(D − 1)(m− 1) XOR gates to compute E(i).
– The previous statement also implies that the double summation in

(10) requires m(k +1) AND gates and (D−1)k XOR gates. However,
assuming that p(α) is fixed and known ahead of time, the AND gates
are not required and we are only left with the XOR gates. Thus, the
overall complexity of (10) is (D − 1)k + (k + D) = D(k + 1) XOR
gates.

– To reduce the critical path of the multiplier we also use a binary tree
architecture. We have D terms resulting from the modular reduction

12

and D + 1 from the multiplier and the accumulator. This results in a
maximal critical path of (dlog2(D)e+ dlog2(D + 1)e) ∆XOR + ∆AND.

The previous discussion is summarized in Table 2.

Table 2. Area complexity and critical path delay of modified digit mul-
tiplier over F2m . Digit size D and fixed p(α) satisfying Theorem 1.

Multiplier Circuit Area Critical Path Latency
Type Complexity Delay (# clocks)

AND XOR MUX FF

modified MSDE Shift-register B – – – m (dlog2(D)e+ dm/De

(ABd−1−i + CαD) mod q(α) mD (m + k)D – – dlog2(D + 1)e) ∆XOR+
Accumulator C – – – m ∆AND
Overall mD (m + k)D 2m

From Table 2 and 1, it is easy to see that the proposed multiplier
results in a small area improvement when compared to [5] and in a sig-
nificant improvement in terms of critical path.

4.3 Other Observations

We notice that the present architecture can be combined with some of
the design choices made by Batina et al. [5]. In particular, the idea of
providing a loadable C register can be combined with the present multi-
plier as well. This would lead to a somewhat smaller implementation of
an ALU targeting an ECC implementation.

Notice also that the same idea used in [5] to avoid having to imple-
ment an adder can be applied to LSDE multipliers to reduce their area
complexity. In particular, not only can you provide a loadable C regis-
ter but also a loadable A register. This would allow the designer get rid
off the MUX in Fig. 1. Nevertheless, it is apparent from the results that
MSDE architectures are always better in terms of area when compared
to LSDE-based multipliers.

5 Concluding Remarks

This work introduces a new finite field multiplier based on a modification
of the standard MSDE multiplier introduced in [25]. The modification
results in a slight improvement in the area complexity of the multiplier
when compared to [5] and in the ability to reduce the critical path of the
multiplier from linear complexity to logarithmic complexity. We conclude

13

that the presented design should be the architecture of choice for imple-
mentations of ECC that target ultra-constrained environments such as
RFID tags and sensor nodes. We also notice that the present architecture
shows even greater appeal for applications in which the field characteris-
tic is non-binary, such as systems based on the computation of the Tate
pairing. Future work will include the implementation of the multiplier in
hardware and its application to an ECC processor.

References

1. D. V. Bailey and C. Paar. Efficient Arithmetic in Finite Field Extensions with
Application in Elliptic Curve Cryptography. Journal of Cryptology, 14(3):153–176,
2001.

2. S. Baktir and B. Sunar. Optimal tower fields. IEEE Trans. Computers,
53(10):1231–1243, 2004.

3. L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and I. Verbauwhede.
An Elliptic Curve Processor Suitable For RFID-Tags. Cryptology ePrint Archive,
Report 2006/227, July 4th, 2006. Available at http://eprint.iacr.org/.

4. L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and I. Verbauwhede.
Public-Key Cryptography for RFID-Tags. In IEEE Conference on Pervasive Com-
puting and Communications Workshops — PerCom 2007 Workshops, New York,
March 19-23, 2007. IEEE Computer Society.

5. L. Batina, N. Mentens, K. Sakiyama, B. Preneel, and I. Verbauwhede. Low-cost El-
liptic Curve Cryptography for Wireless Sensor Networks. In L. Buttyan, V. Gligor,
and D. Westhoff, editors, European Workshop on Security and Privacy in Ad hoc
and Sensor Networks — ESAS 2006, volume 4357 of LNCS, pages 6–17. Springer,
September 20-21, 2006.

6. G. Bertoni, J. Guajardo, S. S. Kumar, G. Orlando, C. Paar, and T. J. Wollinger.
Efficient GF (pm) Arithmetic Architectures for Cryptographic Applications. In
M. Joye, editor, Topics in Cryptology - CT-RSA 2003, volume 2612 of LNCS,
pages 158–175. Springer, April 13-17, 2003.

7. G. Bertoni, J. Guajardo, and G. Orlando. Systolic and Scalable Architectures
for Digit-Serial Multiplication in Fields GF (pm). In T. Johansson and S. Maitra,
editors, Progress in Cryptology - INDOCRYPT 2003, volume 2904 of LNCS, pages
349–362. Springer, December 8-10, 2003.

8. H. Chan and A. Perrig. Security and Privacy in Sensor Networks. IEEE Computer,
36(10):103–105, 2003.

9. D. E. Culler, D. Estrin, and M. B. Srivastava. Guest editors’ introduction:
Overview of sensor networks. IEEE Computer, 37(8):41–49, 2004.

10. H. Fan and M. A. Hasan. Relationship between GF (2m) Montgomery and Shifted
Polynomial Basis Multiplication Algorithms. IEEE Trans. Computers, 55(9):1202–
1206, 2006.

11. H. Fan and M. A. Hasan. A New Approach to Subquadratic Space Complexity Par-
allel Multipliers for Extended Binary Fields. IEEE Trans. Computers, 56(2):224–
233, 2007.

12. G. Gaubatz, J.-P. Kaps, E. Öztürk, and B. Sunar. State of the Art in Ultra-Low
Power Public Key Cryptography for Wireless Sensor Networks. In 2nd IEEE Inter-
national Workshop on Pervasive Computing and Communication Security (PerSec
2005), Kauai Island, Hawaii, March 2005.

14

13. J. Goodman and A.P. Chandrakasan. An energy-efficient reconfigurable public-key
cryptography processor. IEEE Journal of Solid-State Circuits, 36(11):1808–1820,
November 2001.

14. J. Guajardo Merchan. Arithmetic Architectures for Finite Fields GF (pm) with
Cryptographic Applications. PhD thesis, Fakultät für Elektrotechnik und Informa-
tionstechnik, Ruhr-Universität-Bochum, Bochum, Germany, July 2004. Available
from http://www.crypto.rub.de.

15. A. A.-A. Gutub, A. F. Tenca, E. Savas, and Ç. K. Koç. Scalable and Unified Hard-
ware to Compute Montgomery Inverse in GF (p) and GF (2). In B. S. Kaliski Jr.,
Ç. K. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems
— CHES 2002, volume 2523 of LNCS, pages 484–499. Springer, August 13-15,
2002.

16. A. Juels. RFID Security and Privacy: A Research Survey. IEEE Journal on Se-
lected Areas in Communications, 24(2):381–394, February 2006. Extended version
available from http://www.rsasecurity.com/rsalabs/node.asp?id=2029.

17. S. Kumar, T. J. Wollinger, and C. Paar. Optimum Digit Serial GF (2m) Multipliers
for Curve-Based Cryptography. IEEE Trans. Computers, 55(10):1306–1311, 2006.

18. P. Mihăilescu. Optimal Galois Field Bases which are not Normal. Recent Results
Session — FSE ’97, 1997.

19. G. Orlando and C. Paar. A High Performance Reconfigurable Elliptic Curve Pro-
cessor for GF (2m). In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware and
Embedded Systems — CHES 2000, volume 1965 of LNCS, pages 41–56. Springer,
August 17-18, 2000.

20. E. Özturk, B. Sunar, and E. Savaş. Low-Power Elliptic Curve Cryptography Using
Scaled Modular Arithmetic. In M. Joye and J. J. Quisquater, editors, Cryptographic
Hardware in Embedded Systems — CHES 2004, volume 3156 of LNCS, pages 92–
106. Springer-Verlag, 2004.

21. C. Paar. A New Architecture for a Parallel Finite Field Multiplier with Low
Complexity Based on Composite Fields. IEEE Trans. Computers, 45(7):856–861,
1996.

22. D. Page and N. P. Smart. Hardware implementation of finite fields of characteristic
three. In B. S. Kaliski, Jr., Ç. K. Koç, and C. Paar, editors, Workshop on Cryp-
tographic Hardware and Embedded Systems — CHES 2002, volume LNCS 2523,
pages 529–539. Springer-Verlag, 2002.

23. E. Savas, A. F. Tenca, and Ç. K. Koç. A Scalable and Unified Multiplier Archi-
tecture for Finite Fields GF (p) and GF (2m). In Ç. K. Koç and C. Paar, editors,
Cryptographic Hardware and Embedded Systems — CHES 2000, volume 1965 of
LNCS, pages 277–292. Springer, August 17-18, 2000.

24. R. Schroeppel, C. L. Beaver, R. Gonzales, R. Miller, and T. Draelos. A Low-
Power Design for an Elliptic Curve Digital Signature Chip. In B. S. Kaliski Jr., Ç.
K. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems —
CHES 2002, volume 2523 of LNCS, pages 366–380, 2002.

25. L. Song and K. K. Parhi. Low Energy Digit-Serial/Parallel Finite Field Multipliers.
Journal of VLSI Signal Processing, 19(2):149–166, June 1998.

26. B. Sunar. A Generalized Method for Constructing Subquadratic Complexity
GF (2k) Multipliers. IEEE Trans. Computers, 53(9):1097–1105, 2004.

27. J. Wolkerstorfer. Scaling ECC Hardware to a Minimum. In ECRYPT workshop -
Cryptographic Advances in Secure Hardware - CRASH 2005, September 6-7 2005.
Invited talk.

15

