
Physical Unclonable Functions and Their Applications to

Vehicle System Security (Full Paper)

Muhammad Asim, Jorge Guajardo, Sandeep S. Kumar, and Pim Tuyls

Philips Research Europe, Eindhoven, The Netherlands

{muhammad.asim,jorge.guajardo,sandeep.kumar,pim.tuyls}@philips.com

Abstract. In recent years, there has been a tremendous increase in the usage of IT based systems in
vehicles, with predictions that in the near future, more than 90% of innovations in the automotive
sector will be centered on IT software and hardware. However, innovation also means that IP
is created, which is valuable to third (potentially) untrusted and malicious parties. In particular,
automobiles are already suffering from security issues, such as illegal copying of software intellectual
property (IP), counterfeiting of electronic components, illegal tampering with digital data inside
the electronic control units (ECUs), etc. Recently Physical Unclonable Functions (PUFs) attracted
significant interest for numerous applications such as protection of software and hardware IPs,
secure key storages and components identification, to name a few. In this paper, we describe how
PUFs can be used for secure key storage, component identification, and IP protection in vehicle
applications. In addition, the suitability of PUFs for vehicle insurance applications is explained.

1 Introduction

Today we are used to observing improvements in processors every 18 months, 50% price decreases in
less than a year periods, and new technological innovations every day of our lives. As expected, every
aspect of our lives is subject to this fast moving and changing society, including the automobile. Today’s
automobile are complex systems including over 70 processors and over hundred megabytes of program
code [38]. Tomorrow’s automobiles will include connection to the Internet, real-time road condition
information, and many other innovation that we can not yet imagine. However, it is our belief that
many of these innovations will only be successful if integrated into a framework which takes into account
both security and safety concerns. In fact, it is already clear that counterfeiting of parts destined for
automobiles and planes is a lucrative business as well as a dangerous one for the end consumer [15].
Notice also that counterfeiting is not limited to the automobile industry. Rather, it is a much larger
problem as the following examples will demonstrate:

– It is estimated that global economic damage across all industries due to the counterfeiting of goods
surpasses the 600 billion per year mark [27]. In India, 15% of fast-moving consumer goods and 38%
of auto parts are counterfeited.

– In addition to the brand damage that a particular company may suffer, counterfeited products have
impact on our safety as well. For example, counterfeited spare parts of planes have caused planes to
crash [15] and above all counterfeiting in the medicine is a direct threat to the existence of humanity.

– Counterfeiting in the software sector is a real threat as digital content can be easily copied. Notice that
the costs for software and electronics are estimated to approach the 50% margin in car manufacturing
by 2015 [29]. Perhaps more importantly, there are estimates that already today more than 90% of
all vehicle innovations are centered on IT software and hardware [26].

Thus, it is no surprise that a lot of work has gone into developing solutions to prevent security
breaks in automobile systems [20, 36, 1, 37, 4, 30]. Moreover, and as a result of the need for security,
future automobile applications will make use of standard cryptographic primitives and security solutions.
Observe that a widely accepted security principle is that of basing the overall security of the system on
the secrecy of the key. Thus, protecting keys from compromise seems of the utmost importance. In this
paper, we suggest that a cheap, secure and efficient manner to achieve the above goal is via Physical
Unclonable Functions (PUFs). We show in the paper that PUFs can also be used as unclonable identifiers
and in combination with private-key and public-key primitives to safeguard intellectual destined for the
automobile. In addition, we suggest that PUFs would be advantageous for insurance purposes as well.



The remainder of this contribution is organized as follows. Section 2 provides a brief introduction
to error correcting codes and universal hash functions, which are basic building blocks for helper data
algorithms. The definitions of PUFs, their properties, the assumptions made on their behavior and
implementation, helper data algorithm used to cope with the noisy nature of physical processes (such
as PUFs) are introduced in Sect. 3. In Sect. 4, we provide an summary of the state-of-the-art solutions
for security in cars, heavily based on [38]. We also described in some detail the work on component
identification of [36], on which we based our some of our discussion on uses of PUFs in automobiles.
Section 5 describes four applications of PUFs which we consider relevant to the automobile setting:
secure key storage, component identification, protection of IP to be used in the car both as part of the
car (manufacturer IP) and for the end user, and finally we describe how PUFs could enhance the work
of insurance companies when verifying the authenticity of parts and their role in accidents.

2 Preliminaries

In our discussion of physical unclonable functions and their use in anti-counterfeiting applications we will
assume familiarity with standard cryptographic blocks such as symmetric-key primitives (e.g. the AES,
DES, triple-DES), hash functions (e.g. MD5, SHA-1, SHA-2) and public-key based primitives (RSA,
elliptic curves). We will also make use of error correcting codes and universal hash functions. In order
to make the treatment self-contained, we will provide a brief introduction to the latter subjects in what
follows. For an introduction to standard crytpto primitives in the context of automotive security we refer
for example to [38].

2.1 Error Correcting Codes

We will begin by informally defining block codes. A block code is essentially a set and a pair of algorithms.
The first one adds redundancy to a message (via an encoding algorithm) so that upon receiving the
encoded (noisy) message, this can be decoded with minimal errors using the decoding algorithm. One
important characteristic that differentiates block codes from other codes (e.g. convolutional codes) is
that they are fixed length. In particular, a block code encodes k-digit messages into n-digit codewords.
Digits corresponds to the symbols from a set or alphabet, which often is a finite field and in this paper
will be the binary alphabet i.e. {0, 1} ∈ F2.

More formally, a binary linear code C with message length k and codeword length n is a k-dimensional
subspace of F

n
2 . The messages specify each element of the subspace and the codewords are their represen-

tations in F
n
2 . Given two codewords v = (v1, v2, . . . , vn), and w = (w1, w2, . . . , wn), with vi, wi ∈ F2, the

Hamming distance between the two words, denoted by dH , is the number of coordinates in which v and
w differ. The minimum distance dmin of a linear code C is the smallest Hamming distance between any
two different codewords in C. For linear codes the minimum distance is equal to the minimum non-zero
weight in C. We write an [n, k, d]-code to mean a binary code C of length n, cardinality 2k (encoding mes-
sages of length k), and minimum distance d. A linear code with minimum distance d has error correcting
capability or error correcting distance t =

⌊

dmin−1
2

⌋

. We assume also the existence of efficient encoding
and decoding algorithms for the specific block code chosen. We refer the reader to [2, 22] as standard
references for error correcting codes.

Example 1. One of the simplest linear binary error correcting codes is the odd repetition code, [n, 1, n]-
code. For example, the [5, 1, 5]-code would encode the bit ′1′ into the codeword (1, 1, 1, 1, 1) and the bit
′0′ into the codeword (0, 0, 0, 0, 0). Decoding is done by simple majority logic. In other words, count the
number of one (′1′) bits and if there are more than half the number of bits in the whole word, decode to
a one and otherwise decode to zero. Thus, the need to encode a bit into an odd number of bits.

2.2 Randomness Extraction and Universal Hash Functions

In general, physical sources of randomness, such as Physical Unclonable Functions, are not perfect. By
not perfect, we mean that they produce strings of bits which could be biased and which, often, are not
uniformly distributed. Notice that cryptographic keys have a general requirement to be both random
and uniformly distributed. Thus, a randomness extractor can be used to transform imperfect sources
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of randomness into random and uniformly distributed strings suitable for cryptographic applications. A
possible construction for a randomness extractor is via the concept of universal hash functions.

A universal hash function, introduced by Carter and Wegman in [6], is a map from a finite set A of
size a to a finite set B of size b. For a given hash function h and two strings x, x′ with x 6= x′, we define
the function δh(x, x′) as equal to 1 if h(x) = h(x′) and 0 otherwise. For a finite set (or family) of hash
functions H, δH(x, x′) is defined to be

∑

h∈H δh(x, x′). In other words, δH(x, x′) counts the number of
functions h ∈ H for which x and x′ collide. For a random h ∈ H and any two distinct x, x′, the probability
that h(x) = h(x′) is δH(x, x′)/|H|, where |H| denotes the size of the set H. There has been extensive
research on universal hash functions (see for example [31, 25]). To our knowledge, the work of [19] and
the recent work of Kaps et al. [17] are the only ones that consider their hardware implementation.

Example 2. In [6], one of the universal hash function construction suggested is as follows. Take two sets
A = {0, 1, · · · , a− 1} and B = {0, 1, · · · , b − 1}, let p be a prime such that a ≤ p. Define two functions
fm,n(x) = mx + n mod p for some prime p, where x ∈ A and g(y) = y mod 2k, where b = 2k. Then, the
composition hm,n(x) = g(hm,n(x)) is a universal hash function. In plain words, you take two random
elements of Zp (call them m and n) compute y = fm,n(x) take the k least significant bits of y and that
is the hash of the string x.

3 PUFs and Helper Data Schemes

In 2001, Pappu et al. [28] introduced the concept of Physical Random Functions or Physical Unclonable
Functions (PUFs). Physical Unclonable Functions consist of inherently unclonable physical systems.
When a stimulus is applied to the system, it reacts with a response. Such a pair of a stimulus Ci and a
response Ri is called a challenge-response pair (CRP). In particular, a PUF is considered as a function
that maps challenges to responses. Thus, we write: Ri ← PUF(Ci). PUFs have essentially two parts: i)
a physical part and ii) an operational part. The physical part is a physical system that is very difficult
to clone. It inherits its unclonability from uncontrollable process variations during manufacturing. In the
case of PUFs on an IC such process variations are typically deep-submicron variations such as doping
variations in transistors. The operational part corresponds to a circuit design to take care of the noise
present in PUF responses as well as their non-uniform nature. Examples of PUFs include optical PUFs
[28], silicon PUFs [10] and coating PUFs [32]. In [11] the notion of an Intrinsic PUF or IPUF (a PUF
inherently present in a device) was introduced targeting FPGAs. In [14], a similar idea is presented on
an ultra-low power chip used in sensor node applications. Recently, [35] has introduced ultra-low cost
identifiers based on randomized LC-circuits.

3.1 PUF Security Properties.

As in any security system, in order to evaluate the security of the system, it is necessary that we state the
necessary assumptions for the system to be secure. Previous works [28, 10, 32, 12, 11] have either explicitly
or implicitly made the following assumptions: (i) It is assumed that a response Ri (to a challenge Ci)
gives only a small amount of information on another response Rj (to a different challenge Cj) with i 6= j
and (ii) Without having the corresponding PUF (i.e. the actual physical device or structure) at hand, it
is impossible to come up with the response Ri corresponding to a challenge Ci, except with negligible
probability. In most cases, it is also reasonable to assume that PUFs are tamper evident. This implies
that when an attacker tries to investigate the PUF to obtain detailed information about its structure,
the PUF is damaged and the challenge-response behavior is changed substantially. It is often assumed
as well [12, 11] that the PUF response is only available inside the device after the enrollment procedure.
We will also assume this implicitly.

3.2 Helper Data Algorithms

As a result of the noisy nature of PUF responses a Fuzzy Extractor or Helper Data algorithm is required
to extract secure keys from them. For formal definitions of Fuzzy Extractors and Helper Data algorithms
we refer to [8, 21]. Informally, we need to implement two basic primitives: (i) Information Reconciliation
or error correction and (ii) Privacy Amplification or randomness extraction. In order to implement those
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two primitives, helper data W are generated during the enrollment phase and procedures Gen and Rep

are run. In order to implement the procedures Gen and Rep an error correction code C and a set H
of universal hash functions [6] is required. The Gen-procedure takes as input a PUF response(s) R and
produces as output a key K and helper data W = (W1, W2). This is achieved as follows. First, a code
word CS ← C is chosen at random from C. Then, a first helper data vector equal to W1 = CS ⊕ R is
generated. Furthermore, a hash function hi is chosen at random from H and the key K is defined as
K ← hi(R). The helper data W2 is set to i. During the key reconstruction phase the procedure Rep

is run. It takes as input a noisy response R′ from the same PUF and helper data W and reconstructs
the key K i.e. K ← Rep(R′, W ). This is accomplished according to the following steps: (1) Information
Reconciliation: Using the helper data W1, W1⊕R′ is computed. Then, the decoding algorithm of C is used
to obtain CS . From CS , R is reconstructed as R = W1 ⊕ CS ; and (2) Privacy amplification: The helper
data W2 is used to choose the correct hash function hi ∈ H and to reconstruct the key as K = hi(R).
Notice that we have implicitly assumed the use of a binary code. This construction is a variant of [16]
where the focus was on biometric applications. The security of such constructions has been established
in [16, 21, 8, 5].

4 Security for In-Vehicle Systems

In this section we provide an overview of current solutions, attacker models and typical threats for in-
vehicle systems. We based our discussion heavily on [38], which provides a recent state-of-the-art survey
of these issues.

4.1 Assumptions, Attackers, and Constraints

We will divide attackers in the automotive domain into four categories according to their targets as:

1. Attackers aiming to modify the in-vehicle system infrastructure. These attackers can include the
vehicle’s owner who is interested in modifying the tachometer in order to sell the vehicle for a higher
value or higher tax return, manipulating the motor control unit for unauthorized driving parameters,
etc. This can also include a corrupt mechanic who, for example, would like to earn extra money by
replacing original parts by lower quality ones during an inspection.

2. Attackers aiming to steal intellectual property (IP). To these group belong mostly organized crime
organizations aiming to produce marketable counterfeits at reduced prices. Counterfeits can include
both software and hardware components. This group can also include attackers aiming to steal
competitor’s expertise by reverse engineering installed vehicle parts, for example.

3. Attackers whose aim is the vehicle’s theft. These correspond to the well known car robber, who simply
obtains access to a vehicle in an unauthorized manner and drives away with it.

4. Attackers aiming to misuse the vehicle-to-road-to-vehicle infrastructure. There are several initiatives
in Europe [7, 33] that are looking at the types of applications enabled by car-to-car communications
and intelligent infrastructure. Clearly, an infrastructure relaying safety, location, and other security
critical information will potentially be the target of attacks for personal gain.

Based on their threat analysis against vehicle systems, Wolf et al. [38] have identified the following
overall security objectives:

1. Data confidentiality: unauthorized access to data considered confidential should not be feasible.

2. Data integrity: unauthorized data modification should be infeasible and when feasible, it should
be detectable.

3. Hardware and software component integrity: unauthorized modifications to vehicular hardware
and software components should be infeasible or at least detectable by the vehicle.

4. Service and data availability: authorized hardware and software components should be granted
access to data and services.

5. Uniqueness: hardware components should be infeasible to clone. If a cloning attempt is performed
it should be detected and appropriate measures taken.
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A defining characteristic of automotive systems is that attackers usually have full physical access to
the system and thus have much more freedom to attack the system. Notice that this is in sharp contrast
to PC-based IT system where the attacker has no physical access to the system being attacked [38].
In addition to the added adversarial abilities that automotive systems must be able to withstand, their
resources are rather limited in terms of processing power, memory, etc. Finally, vehicular systems must
be able to work under extreme environmental conditions and for long periods of time (over 20 years),
they have very limited connectivity to the outside world (for example, it seems unlikely that you will be
able to connect to an online server to receive frequent software or cryptographic material updates), the
functionality of the vehicle should work properly even if external communications are severely limited
and infrequent, and from a user interaction point of view, almost all vehicular applications are required
to run almost completely autonomously. We refer to [38] for an extended discussion of these constraints
as well as non-technical ones.

We end this section by noticing that most solutions to the security problem in automotive systems
assume the existence of a security module (SM) (also called in [38] security anchor) which provides
security relevant functionality such as encryption, decryption, signature generation and verification, hash
computation, and secret-key storage. Both hardware and software based solutions are possible as noticed
in [38]. As usual hardware based solutions tend to be more secure at higher cost and (somewhat) reduced
flexibility when compared to software based ones. It is important to point out that such SM must satisfy
certain security requirements. In particular, it should be unclonable, it must be able to be used for secure
key storage applications, it must be able to perform cryptographic operations in an efficient manner and
without leaking secret information, and it must be able to raise an alarm in case of a security breach
[38]. We observe that PUFs thus seem well suited for use inside the SM thanks to their unclonability
and tamper evidence properties. We will elaborate on how to use PUFs for automotive applications in
Sect. 5. In the following, we review existing published security solutions for automotive applications.

4.2 Existing Schemes

In recent years, numerous articles have appeared focusing on embedded security in vehicles [20, 36, 1, 37,
4, 30]. Work has focused on the areas of component identification, vehicular software protection, and on
secure in-vehicle communications. We observe that the types of attacks performed on vehicle systems have
also changed over time. In [30], Scheibel et al. propose an architecture for vehicular software protection,
in which software is bound to a certain vehicle hardware and software configurations. This guarantees
that a content provider’s content is only accessible to previously authorized vehicles with the appropriate
secret keys (used for decryption of the content) The proposed architecture is based on virtualization
technology, the Turaya security kernel, trusted computing (TC) functionality, and on an interoperable
legacy operating system. The Turaya security kernel is a small software layer that provides an abstract
interface to the hardware resources, enforces strong isolation of applications and implements elementary
security services built on a hardware layer, including the support of TC technology. The core of the TC
technology is a Trusted Platform Module (TPM), which is considered tamper proof and bound to the
particular computing platform.

Adelsbach et al. [1], proposed a protocol for the secure distribution and installation of the software
(SW) in an embedded system using public-key broadcast encryption and trustworthy computing to bind
the software to the specific embedded system. Wolf et al.[37] emphasized the importance of secure com-
munication inside the vehicle as an enabler of future services in the automotive industry. By considering
feasible malicious attacks, they proposed several solutions to various vehicular bus security problems such
as authentication, secrecy, etc., based on current modern cryptographic techniques. Bogdanov et al.[4]
present a survey of various architectural security solutions for the automotive applications based upon
hardware modules such as a customized security controller, TPMs, security boxes, FPGAs and ASICs.
They present three possible architectures for the vehicle security system: centralized, semi-centralized,
and fully distributed. Each architecture has advantages and disadvantages ranging from increased security
in the distributed architecture to less complexity in the centralized one.

In [36], a vehicle component identification scheme is proposed in order to prevent the illegal manip-
ulation, counterfeiting, and exchange of devices. Such component identification can be used then as a
basis for future innovative technologies such as electronic license plates, provided that each vehicle has a
unique digital identifier. The proposed protocol is based on a central hardware security module (HSM),
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which is considered to be a tamper proof microcontroller or a TPM module. To identify a component,
a passive RFID transponder (with the capability of performing symmetric cryptography) is used. This
RFID tag is attached to each security or safety critical component in such a way that removing the tag
destroys the component. This can be seen equivalent to the device’s ID being unclonable. Each compo-
nent holds certificate consisting of (PKC , IDC) and it has a private key SKC , where PKC is the public
key corresponding to the private key SKC , while IDC is the component’s unique identifier. The HSM,
imprinted with a secret key KV , holds a list of all vehicle components, referred to as UL. UL is consid-
ered to be securely synchronized regularly with a global list-GL, of all components. The HSM checks the
new component certificate on the installment. On provision of the correct certificate, and being not on
the GL for another vehicle, secret key KV is shared with the component. In the proposed protocol it is
assumed that the components knowing the secret key KV are trustworthy and play fair, i.e. they don’t
compromise the system. The component identification scheme defines three stages during the life-cycle
of a component:

(i) Initialization. This includes the initial installation of the HSM as well as installation of other compo-
nents. The HSM can host several types of keys: (1) a randomly chosen key at installation time, which
will become the vehicle key KV . The vehicle key KV is assumed to be distributed to all components
in a secure environment; (2) unique keys shared with critical vehicle components, which can be agreed
upon using a Diffie-Hellman key exchange, used to either disable the car, raise an alarm, or display
warning messages in case of a system break. During the installation process, it is checked whether
the component knows the vehicle key KV and if so a challenge-response protocol is performed to
verify knowledge of the correct key. If the device is new (it does not know KV ), the validity of the
component’s certificate is checked and if this check passes the vehicle key KV is sent to the component
encrypted with the public key of the component.

(ii) Running System. This executes a system check after a pre-determined period of time. The aim is to
check that the components have not been manipulated, demounted, replaced, etc. Two methodolo-
gies are suggested to perform the check: the HSM challenges each component to prove knowledge of
KV and each component checks another component starting with the HSM until the HSM is chal-
lenged by another component, thus closing the authentication loop. As noticed in [36], system checks
are vulnerable to compromised components. Moreover, in the authentication loop version, a system
component might short-cut the loop skipping a compromised component, for example.

(iii) Component Demounting. Two cases can be distinguished: (1) a component is removed and re-installed
in the same car, in which case no additional protocol needs to be performed; and (2) a component
is removed in an unauthorized manner. To guarantee that (2) does not happen, the authors in [36]
present a scheme where the component identification information is removed from the lists UL and
GL.

5 Applications of PUFs and Helper Data Algorithms in Vehicular Security

5.1 Secure Key Storage and Component Identification

A key observation in [32] is that the coating can be used to store keys (rather than as a challenge-response
repository as in previous works) and that these keys are not stored in memory. Rather, whenever an
application requires the key, the key is generated on the fly. This makes it much more difficult for an
attacker to compromise key material in security applications. Finally, Tuyls et al. [32] show that active
attacks on the coating can be easily detected, thus, making it a good countermeasure against probing
attacks. Observe that the use of PUFs as key storage mechanisms is not limited to coating PUFs. In
particular, a key property of the helper data algorithm is that given only the helper data or the PUF
response, the key can not be derived. In addition, no information can be derived from the public helper
data. Thus, making either the PUF response or the helper data inaccessible to an attacker allows for
secure key storage. This implies that intrinsic-PUFs in the sense of [11] could be highly suitable as SRAM
memory is present in many (if not all) embedded processors. An additional advantage of such SRAM-
based PUF is that there are not additional manufacturing steps or modifications necessary as SRAM
memory is a standard building block of most embedded systems. Summarizing, secret-key storage with
PUFs has several advantages including:
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– The secret-key is not available in memory except for a small period of time (when used as input to a
encryption/decryption/signature algorithm). This also means that if an attacker opens up the chip
where the PUF is contained, it is unlikely that he will be able to obtain any information leading to
the recovery of the key.

– Because of the tamper-evidence property of many PUFs, opening a chip to actively and invasively
attack it, will most likely result in changes to the physical structure defining the PUF. As a result,
an invasive attack will likely result in the key value changing thus, making it impossible to perform
any cryptographic operation involving the original key.

– Traditionally, the previous two properties are associated with expensive hardware components. In
contrast, PUFs offer this functionality at low cost since it involves semiconductor components which
are standard in the building of embedded processors, ICs, and FPGAs.

Observe that a PUF can also be used as an unclonable identifier. In what follows, we show that
using a PUF in the system proposed in [36] can result in simplifications of the complexity of the overall
system. Weimerskirch et al. [36] proposed to attached an RFID tag to each security or safety critical
component in a vehicle for purposes of identification. In addition and as mentioned in Sect. 4.2, each
component has both a public and associated private key pair. Notice that the scheme of [36] is based
on proving knowledge of secret keys (resp. private keys) using Message Authentication Codes (MACs)
(resp. signature schemes). These are well known techniques [23, Chapters 10-11]. PUFs can be used in
two complementary manners. First, a PUF can be used to derive the identifier ID, which if implemented
via a PUF can be made unclonable as well. This has the advantage that the identifier information is
present intrinsically in the component and no additional RFID tag needs to be added. Second, the
private-public key pair can be derived from a PUF as follows. We assume that the system parameters are
available in non-volatile memory of the component in question. For purposes of illustration we consider
a system based on elliptic curves [24, 18] (see [3, 13] for thorough treatments of the subject). By system
parameters, we mean for example, the coefficients of an elliptic curve, a point P of large order and the
order of the subgroup generated by P . Then, a component containing a PUF can be such that it derives
a string inside the component and sets this string equal to the private key SKC of the component, the
device stores the corresponding helper data in non-volatile memory, computes the corresponding public
key PKC = SKC · P , and publishes the public key in a certificate also stored in non-volatile memory.
Such a system has the advantage that the private key of the component is never known outside the
device. In particular, only the device itself knows the private key SKC . Notice that the advantages of the
combination of PUFs with public-key schemes have also been explored in the context of IP protection
schemes for FPGA-based systems [12].

5.2 IP Protection

Looking at the uses of software in current and future vehicle systems, we can observe two types of IP:

1. IP aimed at determining the functionality of the vehicle system. For example, automobile manufac-
turers deploy the same hardware (motor) but define the level of performance for a specific model in
software, charging more for automobiles with additional horse power. It is clear that an attacker would
be interested in buying a cheaper car model and upgrading the software to obtain the performance
of a more expensive model.

2. Third party IP. For example, vehicle navigation systems, and more generally what is termed infotain-
ment in [38]. Services desired on the IP provider side include: time-limited utilization, quantity-limited
utilization, device-bound utilization, usage metered utilization, subscription services.

A key property desired in both cases is the ability to limit the number of platforms on which the
software (regardless of its use) is running. In the next we show how PUFs can be used to this end. The
protocol shown here is based on the protocols used for IP protection on FPGAs presented in [11]. We
limit our exposition to the symmetric-key case but public-key based protocols are equally possible [12].
We observe that the only changes in the protocol of [11] are in the parties involved. In particular, in
our scenario, we talk about the end-user (USR) as opposed to an IP integrator. IP-provider (IPP), the
component’s hardware manufacturer (HWM) and the trusted third party (TTP) are available in both
cases. We have also included the actual device (DEV) as a party involved in an exchanged with the user
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1. Assumptions:
– Communication channel between USR-TTP and TTP-IPP are authenticated and secure
– Fully trusted TTP

2. Enrollment Protocol:
(a) HWM→ TTP : IDHW i||{{C

1

i , R1

i }}, . . . {Cn
i , Rn

i }}

(b) TTP : Generates helper data W
j
i

, W k
i and corresponding keys Kij , Kik from challenge-response pairs

{Cj
i
, R

j
i
} and {Ck

i , Rk
i }, respectively.

3. Authentication Protocol (Online):
(a) USR→ TTP : The end-user sends sends request for software IDSW to run on hardware platform IDHW i to the

TTP.
(b) TTP→ IPP : The TTP forwards the request to the IPP with the software identification number IDSW .
(c) TTP← IPP : The IPP sends the SW to the TTP.
(d) TTP : The TTP encrypts the SW as D ← EncKij

(SW ||IDSW ) and computes a MAC over the encryption

with the second key Kik as F ← MACKik
(W j

i
||W k

i ||C
j
i
||Ck

i ||D).

(e) USR← TTP : W
j
i
||W k

i ||C
j
i
||Ck

i ||D||F .

4. Authentication Protocol (Offline):

(a) DEVHWi
← USR : Performed repeatedly whenever the device wants access to the content W

j
i
||W k

i ||C
j
i
||Ck

i ||D||F .

Fig. 1. Adapted authentication protocol of [11] with fully trusted TTP

when the system is offline. Figure 1 shows the protocol adapted to the automobile setting. The basic idea
in Figure 1 is to use the PUF as a source for secret-key material, both for encryption and MAC-based
authentication. During an enrollment procedure the HWM sends a set of challenge-response pairs to the
TTP, who then can generate, helper data W j

i and a corresponding secret key Kj
i . As explained in [11], the

MAC (Message Authentication Code) is necessary to authenticate the origin of the IP, since encryption
does not provide sufficient authentication guarantees. We emphasized with the offline authentication step
that the last step is performed without access to an online TTP.

5.3 PUFs as Seals for Insurance Applications

Aftermarket body parts sold to the collision repair industry is a lucrative market for both car manufac-
turers and independent part manufacturers. In [9], Frost & Sullivan reports that the number of reported
collisions has been on the rise, ranging between 9 million and 13 million annually. They also estimate
that the number of unreported collisions is climbing every year and it could represent an additional seven
million to eight million annually. Independently manufactured aftermarket parts tend to be of lower cost
in the range 15% to 45% below original equipment (OE) component prices. This is often due to the lower
quality of parts and processes used to manufacture the components. This is especially a lucrative market
since some consumers would rather not report to the insurance agency about an accident due to increased
premiums and instead get it repaired themselves with cheap parts. This leads to big safety concerns for
all road users and additional costs when such cars are involved in accidents. We propose a new system
in which insurance agencies can hold consumers responsible for not reporting accidents and give more
incentives to the ones which use reliable parts when involved in an accident. This involves building upon
an existing system which is used to certify parts and to add a PUF based solution to prove the use of
such parts after an accident.

One such system to certify parts is the Certified Automotive Parts Association (CAPA), a non-profit
organization created in 1987. After rigorous testing, CAPA certifies that a particular part meets CAPA’s
recognized quality standards. The manufacturer is then authorized to place CAPA’s certification mark
on the external body of the certified part. CAPA claims thats once its seal is affixed to a surface, it
will self-destruct when removed. This ensures that a seal cannot be transferred from a certified part to
a non-certified part. This is an open system which includes both independent and OE manufactures.
CAPA has also set up tracing system using a unique serial number on its seals which can be used by
anyone (not just repair shop or insurance companies) online. However, it is not a cradle-to-grave tracing
as the CAPA server do not store any information on when and where the parts have been used. Misuse
such as illicit placing of such a seal on a non-certified part is prevented only by legal means. This creates
a big loop-hole for counterfeit manufacturers who can easily access the public database to create seals
with appropriate numbering. The lack of cradle-to-grave tracing also prevents the insurance agencies to
accurately judge if a part was used on car before or after an accident.
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Our solution involves first adding a PUF based seal to make the identifier unclonable by non-certified
parties and counterfeiters. The vehicle system is similar to the one suggested in [36] in which a central
HSM identifies and holds the status of all components attached to the system. The HSM’s main goal is to
store a status image of the components attached to the car at different time intervals. After an accident,
the insurance agency can irrefutably determine the components that were attached during an accident
based on the certified copy of the tamper resistant HSM.

6 Conclusions

The present contribution shows the use of PUF to solve various vehicle system security problems. We
first gave an overview of the various in-vehicle system security issues and existing solutions. We showed
how PUF based secret-key storage can be used to enhance and simplify existing solutions. The property
of inherent unclonability gives advantages for anti-counterfeiting. On the fly secret key generation using
PUFs provides added security compared to existing solutions. We also show that how to bind software
to a device containing a PUF identifier, thus resulting in a secure IP protection system. Finally, We also
discuss a novel application of PUFs as a seal for insurance agencies to determine the quality of parts
used on a vehicle during an accident in an irrefutable way.
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